Картирование генома (генетические, цитологические и физические карты хромосом). Картирование и определение первичной структуры генома человека Генетическое картирование генов заболеваний человека примеры

Генетические и физические карты По общепринятой классификации методы картирования геномов подразделяют на две категории: p Генетическое картирование p Физическое картирование 2

Составление генетических карт p p Маркёры – позиции каких-либо отличительных признаков. В качестве маркёров на протяжении десятилетий использовались гены, определяющие легко различимые фенотипы. Для более сложных карт использовались в качестве фенотипических признаков организма его биохимические особенности. Карта, основанная на генах, не может быть очень подробной. Также только часть всего числа генов существует в удобно различимых аллельных формах. 3

ДНК-маркёры ДНК–маркёры – нанесённые на карту особенности, которые не являются генами. Всякий пригодный ДНК–маркёр должен иметь два аллеля, как и ген–маркёр. Этому требованию удовлетворяют три типа особенностей последовательности ДНК: -Полиморфизмы длины фрагментов рестрикции (RFLP); -Полиморфизмы длины простых последовательностей (SSLP); -Полиморфизмы отдельных нуклеотидов (SNP). 4

1 ДНК-маркёр. Полиморфизмы длины рестриктов RFLP – первый тип ДНК-маркёров, который был полностью изучен. Ферменты рестрикции разрезают ДНК в определённых сайтах узнавания. Эта специфичность означает, что обработка молекулы ДНК ферментом рестрикции должна производить один и тот же набор фрагментов. С молекулами геномной ДНК так происходит не всегда, так как некоторые участки рестрикции полиморфны и существуют в виде двух аллелей: один показывает правильную последовательность для участка рестрикции и потому разрезается ферментом при обработке ДНК, а второй аллель несёт видоизменение последовательности, так что участок рестрикции уже не опознаётся. В результате этого два смежных фрагмента 5 рестрикции остаются связанными вместе, что

Визуализация RFLP 2. ПЦР используется гораздо чаще. Затравки для ПЦР разрабатываются таким образом, чтобы они отжигались к обеим сторонам полиморфного участка, и RFLP типизируется путём обработки размноженного фрагмента ферментом рестрикции и последующего пробега образца в агарозном геле. 8

2 ДНК-маркёр. Полиморфизмы длины простых последовательностей SSLP – множества повторных последовательностей, которые показывают изменения длины; различные аллели содержат разное число повторных единиц. Существуют SSLP двух типов: минисателлиты и микросателлиты. Два варианта некоторого STR (микросателлита) с повторяющейся последовательностью GA 9

Типы SSLP Минисателлиты (переменное число тандемных повторений, или VNTR). Повторная единица может иметь длину до 25 п. н. 2. Микросателлиты (простые тандемные повторения, или STR). Повторяющийся элемент – 13 п. н. или меньше. 1. 10

Типы SSLP ДНК-маркёры, основанные на микросателлитах, более популярны, чем основанные на минисателлитах, по двум причинам: -Минисателлиты неравномерно распределены по всему геному, чаще встречаются в теломерных областях на концах хромосом, микросателлиты более равномерно распределены в геноме. -точная типизация полиморфизма длины путём ПЦР возможна при длине последовательностей не более 300 п. н. , а большинство минисателлитных аллелей 11

3 ДНК- маркёр. Полиморфизмы отдельных нуклеотидов SNP – это позиции генома, в которых некоторые индивидуумы имеют один нуклеотид, например, G, а другие имеют отличающийся от него нуклеотид – С. 12

Большинство SNP имеют 2 аллеля, поскольку SNP возникают, когда в геноме происходят точечные мутации, преобразовывающие один нуклеотид в другой. Если подобная мутация случится в репродуктивных клетках, то один или более его потомков могут унаследовать эту мутацию, и в итоге SNP станет закреплённым в популяции. 13

Методы типизации SNP Методы базируются на анализе гибридизацией олигонуклеотидов. -Технология чипов ДНК - Методы гибридизации в растворе - Анализ лигированием олигонуклеотидов (OLA) - Система размножения термостабильных мутаций, или тест ARMS. 14

Методы типизации SNP Технология чипов ДНК На поверхность стеклянной пластины площадью 2 см 2 с множеством различных олигонуклеотидов пипеткой наносится предназначенная для тестирования ДНК, помеченная флюоресцентным маркёром. Гибридизация детектируется путём анализа чипа с помощью флюоресцентного микроскопа. Позиции, в которых испускается флюоресцентный сигнал, показывают, какие олигонуклеотиды 1. 15

Методы типизации SNP 2. Метод гибридизации в растворе Используется пара меток, в которые входит флюоресцентный краситель и вещество, гасящее флюоресцентный сигнал при сближении с испускающим его красителем. Краситель прикрепляется к одному концу олигонуклеотида, гасящее вещество – к другому концу. Если между олигонуклеотидом и тестируемой ДНК происходит гибридизация, то данное спаривание оснований нарушается, гаситель отрывается от красителя, и тот вырабатывает флюоресцентный сигнал. 16

Методы типизации SNP 3. Анализ лигированием нуклеотидов (OLA) Применяются два олигонуклеотида, которые отжигаются смежно другу, при этом 3’-конец одного из них точно попадает в SNP. Этот олигонуклеотид образует полностью спаренную основаниями структуру, если в матричной ДНК присутствует одна версия SNP, и когда это происходит, данный олигонуклеотид может быть 17

Методы типизации SNP 4. Система размножения термостабильных мутаций (тест ARMS) Контрольным олигонуклеотидом выступает одна из пары затравок ПЦР. Если контрольная затравка отжигается к SNP, то он может быть продолжен с помощью полимеразы Taq и ПЦР может иметь место, но если она не отжигается из-за того, что присутствует альтернативная версия SNP, то никаких продуктов ПЦР не 18

Сцепление генетических признаков Генетическое картирование основано на законах наследственности, описанных Грегором Менделем ещё в 1865 году. Помимо первых двух законов Менделя, встречаются ещё два случая необычного сцепления: -Неполное доминирование (гетерозиготная форма проявляет фенотип, промежуточный между двумя гомозиготными формами); -Кодоминирование (гетерозиготная форма показывает оба гомозиготных фенотипа) 19

Определяющий шаг в развитии генетического картирования Когда в 1900 году законы Менделя были переоткрыты, выяснилось, что полное сцепление, которое ожидалось между многими парами генов, не осуществилось. Пары генов или наследовались независимо, или показывали лишь неполное сцепление: иногда наследовались вместе, иногда порознь. p Разрешение этого противоречия и стало решающим шагом в развитии составления генетических карт. p 20

Рассуждения Томаса Моргана Неполное сцепление объясняется поведением хромосом во время мейоза. p Процесс кроссинговера (или рекомбинации) был открыт бельгийским цитологом Янсеном в 1909 году и помог Моргану объяснить неполное сцепление. Рассмотрим эффект, который имеет кроссинговер на наследование генов. p 21

Эффект кроссинговера Имеется два возможных сценария: p Между генами А и В не происходит кроссинговер. Тогда две гаметы имеют генотип АВ, две другие – аb. p Между генами А и В происходит кроссинговер. Это приводит к обмену сегментами ДНК между гомологичными хромосомами. В итоге каждая гамета имеет отличный от других генотип: AB, a. B, Ab и ab. Помимо гамет с родительскими генотипами появляются гаметы с 22

Составление генетических карт Когда Морган объяснил неполное сцепление кроссинговером, он изобрёл способ наносить на карту отдельные позиции генов в хромосоме. Допустим, кроссинговер является случайным событием, а значит, может произойти в любой позиции на протяжении пары вытянутых одна вдоль другой хроматид. Если это верно, то два гена, расположенные близко друг к другу, будут разделяться кроссинговерами реже, чем гены, лежащие дальше друг от друга. Частота, с которой гены разъединяются кроссинговерами, будет прямо пропорциональна отдалению их друг от друга. Поэтому частота рекомбинации является мерой расстояния 23

Анализ сцепления генетических признаков у организмов различного типа. Включает три ситуации: p Анализ сцепления генетических признаков у видов наподобие плодовой мушки и мыши, с которыми можно выполнять эксперименты по скрещиванию; p Анализ сцепления генетических признаков у людей, с которыми нельзя проводить эксперименты, но можно изучать родословные; p Анализ сцепления генетических признаков у бактерий, которые не 24

Анализ сцепления генетических признаков при возможности проведения скрещивания Метод основан на анализе потомства от экспериментальных скрещиваний, при известных генотипах родителей. Обычно используется анализирующее скрещивание. Этот метод применим ко всем эукариотам, но неприменим к человеку из этических соображений. 25

Составление генетической карты на основе анализа родословной человека Зачастую из-за соблюдения научной и медицинской этики учёные могут оперировать лишь скудными данными, так как браки редко дают удобное анализирующее скрещивание, и генотипы многих членов семей могут быть неизвестны ввиду смерти или нежелания сотрудничать. Обыкновенно, чтобы решить необходимую генетическую задачу, достаточно знать дополнительно генотип хотя бы одного родственника, но по разным причинам это невозможно. 26

Составление генетических карт бактерий Главная трудность состоит в том, что бактерии гаплоидны и не подвергаются мейозу. Поэтому используются три способа, способные вызвать кроссинговер: p В процессе коньюгации происходит передача эписомы (сегмент хромосомной ДНК длиной до 1 млн. п. н.) p Трансдукция (передача фрагмента ДНК длиной до 50 тыс. п. н. через бактериофаг) p Трансформация (клетка-реципиент 27

Составление физических карт Полученная исключительно генетическими методами карта не будет полностью точна. Это обусловлено следующими причинами: 1. Разрешение генетической карты зависит от числа кроссинговеров, которые были набраны. Для микроорганизмов это не главная проблема, поскольку они могут быть получены в любом количестве. Проблема с людьми и другими эукариотами в том, что невозможно получить большое число потомков, так как может быть изучено сравнительно 28

Составление физических карт 2. Генетические карты имеют ограниченную точность. На картинке изображено сравнение физической и генетической карт дрожжей Saccharomyces cerevisiae. Сравнение показывает, что порядок двух верхних маркёров на генетической карте неверен и также есть различия в относительном 29

Составление рестрикционных карт Простейший способ составления рестрикционной карты – сравнение размеров фрагментов, полученных при переваривании молекулы ДНК двумя разными ферментами рестрикции. Выбрать единственно верную карту позволяет дополнительная обработка исходной ДНК одним ферментом с предотвращением протекания переваривания до конца. Это называется частичной рестрикцией. Масштаб рестрикционной карты ограничивается длиной рестриктов. Рестрикционное картирование более приемлемо для маленьких молекул. 31

Составление рестрикционных карт Возможно ли использование рестрикционного анализа для картирования геномов размером более 50 тыс. п. н. ? Да, ограничения рестрикционного картирования могут быть ослаблены за счёт подбора ферментов, которые имеют редкие участки разрезания в целевой молекуле ДНК («редкощепящие рестриктазы») 32

Метод OFAGE Электрофорез в геле с ортогонально чередующимся полем. Таким образом, каждое изменение поля вынуждает молекулы перестраиваться, короткие молекулы перестраиваются и Электрическое поле чередуется мигрируют через гель между двумя парами быстрее длинных. За счёт электродов, каждая из которых такого приёма позволяются помещена по углом 45° к более длинные фрагменты, продольной линии геля. чем при обычном электрофорезе. К подобного рода методам относят также CHEF – электрофорез в геле с однородными электрическими полями и 33 FIGE – электрофорез в геле с обращением поля.

Непосредственное наблюдение участков рестрикции в молекулах ДНК. Для нанесения на карту участков рестрикции можно использовать методы, не связанные с электрофорезом. p Метод оптического картирования: позиции участков рестрикции определяются путём непосредственного наблюдения разрезанных молекул ДНК в микроскоп. Для закрепления ДНК на предметном стекле используют вытягивание гелем и расчёсывание молекул. p Для вытягивания гелем хромосомную ДНК переводят во взвесь в расплавленной агарозе и помещают на предметное стекло микроскопа. По мере охлаждения и затвердевания геля молекулы ДНК вытягиваются. p Для расчёсывания волокна ДНК приготовляют путём погружения покрытого силиконом покровного стекла в раствор ДНК, выдерживая его там в течение 5 минут. Далее вынимают стекло из раствора. Сила, необходимая для 34 протягивания ДНК через поверхностный мениск, заставляет каждую из них вытягиваться в линию. При засыхании ДНК

Флюоресцентная гибридизация in situ (FISH) В этой методике маркёром является последовательность ДНК, которая отображается путём гибридизации с флюоресцентным зондом. Ненарушенная хромосома исследуется путём её зондирования меченой молекулой ДНК. Для работы метода ДНК в хромосоме денатурируется(высушивается на предметном стекле и обрабатывается 36

FISH в действии 1. 2. Первоначально метод использовался с метафазными хромосомами, но их сильная уплотнённость не позволяла составлять карты с высокой разрешающей способностью. В 1995 году был разработан ряд методов FISH более высокого разрешения. Оно достигалось за счёт изменения характера изучаемого хромосомного аппарата. Если метафазные хромосомы слишком сжаты для крупномасштабного картирования, то нам следует использовать хромосомы в более вытянутом виде. Добиться этого можно двумя способами. Механически вытянутые хромосомы могут быть получены за счёт изменения метода приготовления препарата, применяемого для выделения хромосом из метафазных ядер. Неметафазные хромосомы используются, потому что во всех стадиях клеточного цикла, кроме метафазы, хромосомы пребывают в естественном для них 37 развёрнутом состоянии. Интерфазные хромосомы

Картирование с помощью меченых участков последовательности (STS) В настоящее время это самый мощный метод физического картирования. Меченый участок последовательности, или STS – короткая последовательность ДНК, 100 -500 п. н. в длину, которая легко опознаётся и лишь единожды встречается в хромосоме или изучаемом геноме. Чтобы нанести на карту набор STS, необходимо располагать множеством перекрывающихся фрагментов ДНК из отдельной хромосомы или полного генома. Какие фрагменты содержат какие STS, определяется методом гибридизационного анализа, или, чаще, ПЦР. Любая уникальная последовательность ДНК может быть использована в качестве STS. Для этого последовательность ДНК должна быть известна, а STS должен иметь уникальное 38 местоположение на изучаемой хромосоме.

Методы получения STS 1. 2. 3. Ярлыки экспрессируемых последовательностей – короткие последовательности, получаемые анализом клонов к. ДНК. Полиморфизмы длины простой последовательности (SSLP) Случайные геномные последовательности – получают секвенированием случайных частей клонированной геномной к. ДНК. 39

Фрагменты ДНК для картирования с помощью STS Иначе реактив для картирования; существуют в виде библиотеки клонов и радиационных гибридов. Радиационный гибрид – клетка грызуна, содержащая фрагменты хромосом другого организма. При разбиении хромосомы на фрагменты большая доза излучения давала большее число фрагментов. Слияние стимулируется химически (полиэтиленгликолем) или биологически – вирусом Сёндай. 40

Выводы p p p Карты геномов – опорная схема для проектов секвенирования, так как они позволяют проверять точность собранной последовательности ДНК. Генетические карты строят по результатам экспериментов по скрещиванию и анализа родословных, физические карты – посредством прямого наблюдения молекул ДНК. В самых первых генетических картах маркёрами выступали гены, аллели которых можно было легко отличать (по резко отличным фенотипам), ныне же ДНК-маркёрами являются полиморфизмы длины фрагмента рестрикции (RFLP), полиморфизмы длины простой последовательности (SSLP) и полиморфизмы отдельных нуклеотидов (SNP). Все они легко типизируются посредством ПЦР. Анализ сцепления генетических признаков позволяет определить частоту рекомбинации между парой маркёров. Для многих организмов анализ сцепления генетических признаков прослеживается при помощи запланированных 41 экспериментов по скрещиванию. С людьми их проведение

Выводы p p p Генетическое картирование генома человека опирается на сведения, почёрпнутые из анализа родословной. Низкое разрешение генетических карт уточняется физическим картированием. В молекуле ДНК позиции участков рестрикции определяются рестрикционным картированием. Флюоресцентная гибридизация более продуктивная, в ней препарат зондируется маркёром, меченным флюоресцентной меткой. Позиция гибридизации определяется микроскопированием. Наиболее подробные физические карты получаются методом картирования содержания меченых участков последовательности (STS). Позиция маркёра на карте определяется фрагментами из коллекции, содержащими копии маркёра. 42

Вскоре после переоткрытия законов Менделя немецкий цитолог Теодор Бовери (1902) представил доказательства в пользу участия хромосом в процессах наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом. В это же время (1903 г.) американский цитолог Уильям Сэттон обратил внимание на параллелизм в поведении хромосом в мейозе и гипотетических факторов наследственности, существование которых предсказал еще сам Мендель.

Уильям Сэттон предположил, что в одной хромосоме может находиться несколько генов. В этом случае должно наблюдаться сцепленное наследование признаков, т.е. несколько разных признаков могут наследоваться так, как будто они контролируются одним геном. В 1906 г. У. Бэтсон и Р. Пеннет обнаружили сцепленное наследование у душистого горошка. Они изучали совместное наследование: окраски цветков (пурпурная или красная) и формы пыльцевых зерен (удлиненная или округлая). При скрещивании дигетерозигот в их потомстве наблюдалось расщепление 11,1:0,9:0,9:3,1 вместо ожидаемого 9:3:3:1. Создавалось впечатление, что факторы окраски и формы пыльцы имеют тенденцию при рекомбинации задатков оставаться вместе. Это явление авторы назвали «взаимным притяжением факторов», но природу его им выяснить не удалось.

Дальнейшее изучение хромосом как носителей информации происходило в первые десятилетия ХХ века в лаборатории Томаса Ханта Моргана (США) и его сотрудников (А. Стёртеванта, К. Бриджеса, Г. Мёллера). В качестве основного объекта исследований Морган использовал плодовую мушку дрозофилу (Drosophila melanogaster), которая оказалась очень удобным модельным объектом:

– Во-первых, эта мушка легко культивируется в лабораторных условиях.

– Во-вторых, она характеризуется малым числом хромосом 2 n = 8).

– В-третьих, в слюнных железах личинок дрозофилы имеются гигантские (политенные) хромосомы, удобные для прямого наблюдения.

– И, наконец, дрозофила отличается высокой изменчивостью морфологических признаков.

На основании экспериментов с плодовой мушкой дрозофилой Морганом и его учениками была разработана хромосомная теория наследственности.

Основные положения хромосомной теории наследственности:

1. Ген – это элементарный наследственный фактор (термин «элементарный» означает «неделимый без потери качества»). Ген представляет собой участок хромосомы, отвечающий за развитие определенного признака. Иначе говоря, гены локализованы в хромосомах.

2. В одной хромосоме могут содержаться тысячи генов, расположенных линейно (подобно бусинкам на нитке). Эти гены образуют группы сцепления. Число групп сцепления равно числу хромосом в гаплоидном наборе. Совокупность аллелей в одной хромосоме называется гаплотип. Примеры гаплотипов: ABCD (только доминантные аллели), abcd (только рецессивные аллели), AbCd (различные комбинации доминантных и рецессивных аллелей).

3. Если гены сцеплены между собой, то возникает эффект и сцепленного наследования признаков, т.е. несколько признаков наследуются так, как будто они контролируются одним геном. При сцепленном наследовании в череде поколений сохраняются исходные сочетания признаков.

4. Сцепление генов не абсолютно: в большинстве случаев гомологичные хромосомы обмениваются аллелями в результате перекреста (кроссинговера) в профазе первого деления мейоза. В результате кроссинговера образуются кроссоверные хромосомы (возникают новые гаплотипы, т.е. новые сочетания аллелей.). С участием кроссоверных хромосом в последующих поколениях у кроссоверных особей должны появляться новые сочетания признаков.

5. Вероятность появления новых сочетаний признаков вследствие кроссинговера прямо пропорциональна физическому расстоянию между генами. Это позволяет определять относительное расстояние между генами и строить генетические (кроссоверные) карты разных видов организмов.

КРОССИНГОВЕР

Кроссинговер (от англ. crossing-over – перекрёст) – это процесс обмена гомологичными участками гомологичных хромосом (хроматид).

Обычно кроссинговер происходит в мейозе I.

При кроссинговере происходит обмен генетическим материалом (аллелями) между хромосомами, и тогда происходит рекомбинация – появление новых сочетаний аллелей, например, AB + ab → Ab + aB.

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с хроматидами АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В, тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b. Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные хроматиды Ab и аВ. В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными, с их участием разовьются кроссоверные гаметы, зиготы и особи. Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах.

Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе. В частности, возможна смена матрицы в вилке репликации.

Генетические (кроссоверные) карты

Алфред Стёртевант (сотрудник Моргана) предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния между генами. Иными словами, частота кроссинговера, выражаемая отношением числа кроссоверных особей к общему числу особей, прямо пропорциональна расстоянию между генами. Тогда можно использовать частоту кроссинговера для того, чтобы определять взаимное расположение генов и расстояние между генами. Единицей расстояния между генами служит 1 % кроссинговера; в честь Моргана эта единица называется морганидой (М).

На основании генетического картирования составляются генетические карты – схемы, отражающие положение генов в хромосомах относительно других генов. На генетических картах крайнему гену (т.е. наиболее удаленному от центромеры) соответствует нулевая (исходная) точка. Удаленность какого-либо гена от нулевой точки обозначается в морганидах.

Построение генетических карт различных организмов имеет большое значение в здравоохранении, селекции и экологии. При изучении признаков человека (и в частности, генетических заболеваний) важно знать, какой именно ген определяет рассматриваемый признак. Эти знания позволяют составлять прогнозы при медико-генетическом консультировании, при разработке методов лечения генетических заболевания, в т.ч. и для коррекции генома. Знание генетических карт культурных растений и домашних животных позволяет планировать селекционный процесс, что способствует получению надежных результатов в краткие сроки. Построение генетических карт дикорастущих растений и диких животных важно и сточки зрения экологии. В частности, исследователь получает возможность изучать не просто фенотипические признаки организмов, а конкретные, генетически обусловленные признаки.

Двойной и множественный кроссинговер

Морган предположил, что кроссинговер между двумя генами может происходить не только в одной, но и в двух и даже большем числе точек. Четное число перекрестов между двумя генами, в конечном счете, не приводит к их перемещению из одной гомологичной хромосомы в другую, поэтому число кроссинговеров и, следовательно, расстояние между этими генами, определенное в эксперименте, снижаются. Обычно это относится к достаточно далеко расположенным друг от друга генам. Естественно, что вероятность двойного перекреста всегда меньше вероятности одинарного. В принципе она будет равна произведению вероятности двух единичных актов рекомбинации. Например, если одиночный перекрест будет происходить с частотой 0,2, то двойной – с частотой 0,2 × 0,2 = 0,04. В дальнейшем, наряду с двойным кроссинговером, было открыто и явление множественного кроссинговера: гомологичные хроматиды могут обмениваться участками в трех, четырех и более точках.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена.

Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m. Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).

Цитологическое доказательство кроссинговера

Прямые цитологические свидетельства обмена частей хромосом во время кроссинговера были получены в начале 30-х годов у дрозофилы и кукурузы.

Рассмотрим опыт Штерна, проведенный на D. melanogaster. Обычно две гомологичные хромосомы морфологически неразличимы. Штерн исследовал Х-хромосомы, которые имели морфологические различия и, следовательно, были гомологичны не полностью. Однако гомология между этими хромосомами сохранялась на большей части их длины, что позволяло им нормально спариваться и сегрегировать в мейозе (то есть нормально распределяться по дочерним клеткам). Одна из Х-хромосом самки в результате транслокации, т. е. перемещения фрагмента Y-хромосомы, приобрела Г-образную форму. Вторая Х-хромосома была короче нормальной, так как часть ее была перенесена на IV хромосому. Были получены самки, гетерозиготные по указанным двум, морфологически различным, Х-хромосомам, а также гетерозиготные по двум генам, локализованным в Х-хромосоме: Bar (В) и carnation (cr). Ген Bar – это полудоминантный ген, влияющий на количество фасеток и, следовательно, форму глаза (мутанты с аллелем В имеют полосковидные глаза). Ген cr контролирует окраску глаз (аллель cr+ обусловливает нормальную окраску глаз, а аллель cr – окраску глаз цвета красной гвоздики). Г-образная Х-хромосома несла аллели дикого типа В+ и cr+, укороченная хромосома – мутантные аллели В и cr. Самки указанного генотипа скрещивались с самцами, имевшими морфологически нормальную Х-хромосому с аллелями cr и В+. В потомстве самок было два класса мух с некроссоверными хромосомами (crB / crB+ и cr+B+ / crB+) и два класса мух, фенотип которых соответствовал кроссоверам (crB+ / crB+ и cr+B / crB+). Цитологическое исследование показало, что у кроссоверных особей произошел обмен участками Х-хромосом, и, соответственно, изменилась их форма. Все четыре класса самок имели по одной нормальной, т. е. палочковидной, хромосоме, полученной от отца. Кроссоверные самки содержали в своем кариотипе преобразованные в результате кроссинговера Х-хромосомы – длинную палочковидную или двуплечую с короткими плечами. Эти опыты, так же как и одновременно полученные аналогичные результаты на кукурузе, подтвердили гипотезу Моргана и его сотрудников о том, что кроссинговер представляет собой обмен участками гомологичных хромосом и что гены действительно локализованы в хромосомах.

Соматический (митотический) кроссинговер.

В соматических клетках иногда происходят обмены между хроматидами гомологичных хромосом, в результате которых наблюдается комбинативная изменчивость, подобная той, которая регулярно генерируется мейозом. Нередко, особенно у дрозофилы и низших эукариот, гомологичные хромосомы синаптируют в митозе. Одна из аутосомно-рецессивных мутаций человека, в гомозиготном состоянии приводящая к тяжелому заболеванию, известному под названием синдром Блюма, сопровождается цитологической картиной, напоминающей синапс гомологов и даже образование хиазм.

Доказательство митотического кроссинговера было получено на дрозофиле при анализе изменчивости признаков, определяемых генами у (yellow – желтое тело) и sn (singed – опаленные щетинки), которые находятся в Х-хромосоме. Самка с генотипом y sn+ / y+sn гетерозиготна по генам у и sn, и поэтому в отсутствие митотического кроссинговера ее фенотип будет нормальным. Однако если кроссинговер произошел на стадии четырех хроматид между хроматидами разных гомологов (но не между сестринскими хроматидами), причем место обмена находится между геном sn и центромерой, то образуются клетки с генотипами y sn+ / y+ sn+ и y+ sn / y+ sn. В этом случае на сером теле мухи с нормальными щетинками появятся близнецовые мозаичные пятна, одно из которых будет желтого цвета с нормальными щетинками, а другое - серого цвета с опаленными щетинками. Для этого необходимо, чтобы после кроссинговера обе хромосомы (бывшие хроматиды каждого из гомологов) y+ sn отошли к одному полюсу клетки, а хромосомы y sn+ – к другому. Потомки дочерних клеток, размножившись на стадии куколки, и приведут к появлению мозаичных пятен. Таким образом, мозаичные пятна образуются тогда, когда рядом расположены две группы (точнее, два клона) клеток, фенотипически отличающиеся друг от друга и от клеток остальных тканей данной особи.

Неравный кроссинговер

Это явление было детально изучено на примере гена Bar (В – полосковидные глаза), локализованного в Х-хромосоме D. melanogaster. Неравный кроссинговер связан с дупликацией какого-либо участка в одном из гомологов и с утратой его в другом гомологе. Обнаружено, что ген В может присутствовать в виде тандемных, т. е. следующих друг за другом, повторов, состоящих из двух и даже трех копий. Цитологический анализ подтвердил предположение о том, что неравный кроссинговер может вести к тандемным дупликациям. В области, соответствующей локализации гена В, на препаратах политенных хромосом отмечено увеличение числа дисков, пропорциональное дозе гена. Предполагается, что в эволюции неравный кроссинговер стимулирует создание тандемных дупликаций различных последовательностей и использование их в качестве сырого генетического материала для формирования новых генов и новых регуляционных систем.

Регуляция кроссинговера

Кроссинговер – это сложный физиолого-биохимический процесс, который находится под генетическим контролем клетки и подвержен влиянию факторов внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х- и Y-хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y-специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых Кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контроля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие функции запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых представляет собой как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Эволюционное значение сцепленного наследования. В результате сцепления одна хромосома может содержать как благоприятные аллели (например, А), так и нейтральные или относительно неблагоприятные (например, N). Если некоторый гаплотип (например, AN) повышает приспособленность его носителей за счет наличия благоприятных аллелей A, то в популяции будут накапливаться как благоприятные аллели, так и сцепленные с ними нейтральные или относительно неблагоприятные N.

Пример. Гаплотип AN обладает преимуществом перед гаплотипом “дикого типа» (++) за счет наличия благоприятного аллеля А, и тогда аллель N будет накапливаться в популяции, если он селективно нейтральный или даже относительно неблагоприятный (но его отрицательное влияние на приспособленность компенсируется положительным влиянием аллеля А).

Эволюционное значение кроссинговера. В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Пример. Гаплотип Al оказывается неблагоприятным по сравнению с гаплотипом «дикого типа» (++) за счет наличия летального аллеля l. Поэтому аллель А (благоприятный, нейтральный ил несколько снижающий приспособленность) не может проявиться в фенотипе, поскольку данный гаплотип (Al) содержит летальный аллель l. В результате кроссинговера возникают рекомбинантные гаплотипы A+ и +l. Гаплотип +l элиминируется из популяции, а гаплотип A+ фиксируется (даже в том случае, если аллель А несколько снижает приспособленность его носителей).

ДОПОЛНЕНИЯ

Принципы генетического картирования

Алфред Стёртевант (сотрудник Моргана) предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния между генами. Иными словами, частота кроссинговера, выражаемая отношением числа кроссоверных особей к общему числу особей, прямо пропорциональная расстоянию между генами. Тогда можно использовать частоту кроссинговера для того, чтобы определять взаимное расположение генов и расстояние между генами.

Генетическое картирование – это определение положения какого-либо гена по отношению к двум (как минимум) другим генам. Постоянство процента кроссинговера между определенными генами позволяет локализовать их. Единицей расстояния между генами служит 1 % кроссинговера; в честь Моргана эта единица называется морганидой (М).

На первом этапе картирования необходимо определить принадлежность гена к группе сцепления. Чем больше генов известно у данного вида, тем точнее результаты картирования. Все гены разбивают на группы сцепления. Число групп сцепления соответствует гаплоидному набору хромосом. Например, у D. melanogaster 4 группы сцепления, у кукурузы – 10, у мыши – 20, у человека – 23 группы сцепления. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Так, у плодовой мушки имеется одна (IV) точечная (при анализе в световом микроскопе) хромосома. Соответственно число генов в ней во много раз меньше, чем в остальных, значительно превосходящих ее по длине. Следует также отметить, что в гетерохроматических районах хромосом генов нет или почти нет, поэтому протяженные области конститутивного гетерохроматина могут несколько изменить пропорциональность числа генов и длины хромосомы.

На основании генетического картирования составляются генетические карты. На генетических картах крайнему гену (т.е. наиболее удаленному от центромеры) соответствует нулевая (исходная) точка. Удаленность какого-либо гена от нулевой точки обозначается в морганидах.

Если хромосомы достаточно длинные, то удаление гена от нулевой точки может превышать 50 М – тогда возникает противоречие между отмеченными на карте расстояниями, превышающими 50%, и постулированным выше положением, согласно которому 50 % кроссоверов, полученных в эксперименте, фактически должны означать отсутствие сцепления, т. e. локализацию генов в разных хромосомах. Это противоречие объясняется тем, что при составлении генетических карт суммируются расстояния между двумя наиболее близкими генами, что превышает экспериментально наблюдаемый процент кроссинговера.

Цитогенетическое картирование

Этот метод основан на использовании хромосомных перестроек. В случае гигантских политенных хромосом он позволяет прямо сопоставлять результаты генетического анализа расстояний между изучаемыми локусами и их взаимного расположения с данными о физических размерах определенных хромосомных областей. При облучении и действии других мутагенов в хромосомах часто наблюдаются выпадения (делеции) или вставки небольших фрагментов, сравнимых по величине с одним или несколькими локусами. Например, можно использовать гетерозиготы по хромосомам, одна из которых будет нести группу следующих друг за другом доминантных аллелей, тогда как гомологичная ей – группу рецессивных форм тех же генов. Если хромосома с доминантными генами будет последовательно терять отдельные локусы, то в гетерозиготе будут проявляться рецессивные признаки. Порядок проявления рецессивных признаков указывает на последовательность расположения генов.

При порядке генов AbC в случае делеции, захватывающей ген С, у мух с укороченной хромосомой, потерявшей фрагмент, равный гену С, в фенотипе проявятся аллели с, b и А.

В целом сравнение генетических (кроссинговерных) и цитологических карт показывает их соответствие: чем больший процент кроссинговера разделяет пару генов, тем больше и физическое расстояние между ними. Однако на несоответствие расстояний, определяемых указанными двумя методами, могут влиять два фактора. Во-первых, это области, в которых затруднен или отсутствует кроссинговер (например, в гетерохроматических районах); во-вторых, физическое расстояние будет больше, чем генетическое, если гены разделены зоной «молчащей» ДНК. Расчеты Бриджеса показали, что каждой единице перекреста на карте политенных хромосом слюнных желез D. melanogaster соответствует 4,2 мкм длины политенных хромосом. Эта длина как минимум равна двум-трем средним генам.

Особенности построения генетических карт у прокариот

Для построения генетических карт у прокариот используется явление конъюгации – переноса генетического материала из одной клетки в другую с помощью специальных кольцевых молекул ДНК (плазмид, в частности, с помощью F–плазмиды).

Вероятность переноса определенного гена в клетку–реципиент зависит от его удаления от F–плазмидной ДНК, а точнее, от точки О, в которой начинается репликация F–плазмидной ДНК. Чем больше время конъюгации, тем выше вероятность переноса данного гена. Это дает возможность составить генетическую карту бактерий в минутах конъюгации. Например, у кишечной палочки ген thr (оперон из трех генов, контролирующих биосинтез треонина) находится в нулевой точке (то есть непосредственно рядом с F–плазмидной ДНК), ген lac переносится через 8 мин, ген recE – через 30 мин, ген argR – через 70 мин и т.д.

Более подробно этот вопрос будет рассмотрен при изучении генетики прокариот.

Картирование хромосом человека

Картирование генов основано на составлении групп сцепления. Чем больше известных мутаций и чем меньше число хромосом, тем легче проводить картирование. В этом отношении человек (помимо того, что у него невозможен классический гибридологический анализ) как объект вдвойне неблагоприятен для картирования: известных генов у него сравнительно немного (по крайней мере, так было до конца 70-х годов), а гаплоидное число хромосом достаточно велико – 22 (не считая половых). Это означает, что вероятность того, что два вновь открытых гена окажутся сцепленными, равна 1/22. По этим причинам анализ родословных, который в какой-то мере заменяет гибридологический анализ, дает довольно ограниченную информацию о характере сцепления.

Более перспективными для картирования генов человека оказались методы генетики соматических клеток. Суть одного из них заключается в следующем. Методы клеточной инженерии позволяют объединять различные типы клеток. Слияние клеток, принадлежащих к разным биологическим видам, называется соматической гибридизацией. Сущность соматической гибридизации заключается в получении синтетических культур путем слияния протопластов различных видов организмов. Для слияния клеток используют различные физико-химические и биологические методы. После слияния протопластов образуются многоядерные гетерокариотические клетки. В дальнейшем при слиянии ядер образуются синкариотические клетки, содержащие в ядрах хромосомные наборы разных организмов. При делении таких клеток in vitro образуются гибридные клеточные культуры. В настоящее время получены и культивируются клеточные гибриды «человек × мышь», «человек × крыса» и многие другие.

В гибридных клетках, полученных из разных штаммов разных видов, один из родительских наборов хромосом, как правило, реплицируется быстрее другого. Поэтому последний постепенно теряет хромосомы. Эти процессы интенсивно протекают, например, в клеточных гибридах между мышью и человеком – видами, различающимися по многим биохимическим маркерам. Если при этом следить за каким-либо биохимическим маркером, например ферментом тимидинкиназой, и одновременно проводить цитогенетический контроль, идентифицируя хромосомы в клонах, образующихся после их частичной утраты, то, в конце концов, можно связать исчезновение хромосомы одновременно с биохимическим признаком. Это означает, что ген, кодирующий этот признак, локализован в данной хромосоме. Так, тимидинкиназный ген у человека находится в хромосоме 17.

Некоторая информация о локализации генов может быть получена при анализе числовых и структурных мутаций хромосом, по встречаемости в семьях хромосом с морфологическими вариациями и по учету наследственных признаков. Для этой же цели используют и частичные моносомии, возникающие в результате делеций. Однако в этих случаях необходимо иметь в виду, что иногда изучаемый ген остается в центрическом фрагменте, но его проявление может быть резко ослаблено в результате эффекта положения или каких-либо иных механизмов регуляции (изменение порядка репликации, отрыв промоторного участка и т. д.). В конце 60-х годов был разработан метод гибридизации in situ, в основе которого лежит специфичность комплементарных взаимодействий гена и его копии (мРНК, а также полученной с помощью обратной транскрипции комплементарной ДНК). Разрешающая способность этого метода гораздо выше на политенных хромосомах, чем на митотических хромосомах человека, однако он постоянно совершенствуется.


Важнейшей задачей молекулярной генетики применительно к медицине является идентификация генов наследственных заболеваний человека и выявление конкретных повреждений в них, приводящих к развитию фенотипических проявлений болезни. Эта задача может пить выполнена с помощью нескольких основных под-
\ОДОВ.
Первый подход к идентификации генов, остававшийся ведущим приблизительно до начала 90-х годов,
| чзируется на имеющейся информации об основном био- х11 мическом дефекте (первичном белковом продукте гена), ха- рактеризующем изучаемую болезнь | Шишкин С.С., Калинин В.Н., ] 992; Gardner Е. et al., 1991; Collins F., 1995].
I l"-реход от белкового анализа на уровень ДНК осуществлялся через секвенирование очищенного белкового продукта и получение ДНК-зондов, использование моноклональных антител и с помощью некоторых других методических приемов. Хромосомная локализация гена в данной схеме поиска является конечным результатом исследования. Описанный подход, использующий ту или иную предварительную информацию о функциональном значении искомого гена, получил название «функциональное клонирование» . Примером успешного применения функционального клонирования является идентификация гена фенилкетонурии. К сожалению, данный метод может быть применен лишь к весьма ограниченному кругу заболеваний человека, тогда как для большинства наследственных болезней первичные продукты гена или патогномоничные биохимические маркеры неизвестны.
Совершенствование молекулярных технологий привело к созданию принципиально иной стратегии поиска гена, не требующей каких-либо предварительных знаний о его функции или первичном биохимическом продукте. Данная стратегия предполагает идентификацию гена на основании точного знания его локализации в определенном хромосомном локусе - «позиционное клонирование» (менее удачный термин «обратная генетика») . Позиционное клонирование ведет к установлению молекулярной основы болезни «от гена к белку» и включает следующие основные этапы: 1) картирование гена болезни в определенном участке конкретной хромосомы (генетическое картирование); 2) составление физической карты изучаемой хромосомной области (физическое картирование); 3) идентификация экспрессирующихся последовательностей ДНК в изучаемой области; 4) секвенирование генов-кандидатов и выявление мутаций в искомом гене у больных лиц; 5) анализ структуры гена.
расшифровка последовательности и первичной структуры его продуктов - мРНК и белка . В ряде случаев позиционное клонирование гена облегчается при обнаружении у больных видимых ци го- генетических перестроек или определяемых делеций в критической хромосомной области, позволяющих значительно повысить точность картирования мутантного гена. Выявление таких перестроек способствовало, в частности, успеху в клонировании генов миодистрофии Дюшепна/Бекера, нейрофиброматоза 1-го типа, туберозного склероза, адренолейкодистрофии и других наследственных заболеваний нервной системы.
Одним из важных промежуточных результатов исследовательского прост а «Геном человека» стало со- здапие все более и более насыщенной транскрипционной карты генома, содержащей сведения о тысячах уже известных генов и экспрессирующихся нуклеотидных последовательностей. Это способствовало значительному развитию еще одного подхода к идентификации первичного генетического дефекта, при котором после предварительного картирования мутантного гена проводится скрининг подходящих генов-кандидатов, расположенных в том же хромосомном участке (lt;lt;positional candidate approach») . Данный метод предполагает наличие определенных знаний о патофизиологии изучаемого заболевания, что дает возможность проводить рациональный отбор гепов-кандидатов для анализа из большого числа генов, которые могут быть расположены в «зоне интереса». Среди неврологических наследственных заболеваний, гены которых были идентифицированы таким образом благодаря анализу подходящих кандидатов в установленном хромосомном интервале, можно назвать дофа-зависимую дистонию и фридрейхо- подобную атаксию с дефицитом витамина Е. По существующим прогнозам, именно анализ «позиционных кандидатов» станет в ближайшем будущем ведущим методом идентификации генов наследственных болезней, чему в немалой степени способствует создание и постоянное расширение компьютерных баз данных экспрессирующихся последовательностей на хромосомах («expressed sequence tags») .
Таким образом, определение хромосомной локализации искомого гена - генетическое картирование - является первым, ключевым шагом на пути к раскрытию молекулярной основы того или иного наследственного заболевания.
Существует несколько основных методов, позволяющих картировать неизвестный ген в конкретном хромосомном локусе: а) клинико-генеалогический (простейший и наиболее давний) - основан на анализе наследования признаков в больших родословных; примером может служить установление локализации гена на Х-хро- мосоме в случае передачи болезни по Х-сцепленному типу; б) цитогенетический - базируется на ассоциации выявляемых при микроскопии хромосомных перестроек с определенным клиническим фенотипом; в) метод гибридизации in situ (в том числе его современная модификация - флюоресцентная гибридизация in situ, FISH) - использует специфическую гибридизацию мРНК и кДНК искомого гена с денатурированными хромосомами на метафазных препаратах клетки; г) метод гибрид ных клеток - основан на анализе совместной сегрегации клеточных признаков и хромосом в клонированных in vitro гибридных соматических клетках [Фогель Ф., Мотульски А., 1990; Gardner Е. et al., 1991]. Все эти методы нашли свое применение в современной молекулярной генетике, однако они обладают серьезными ограничениями, связан ными как с недостаточной разрешающей способностью, так и с существованием жестких предусловий, необходимых для проведения исследования (таких как наличие зондов, доступность селективных систем для отбора гибридных клеток и т.п.). Наиболее мощным, продуктивным и широко используемым в настоящее время методом картирования генов наследственных болезней человека является так называемый linkage-анализ - анализ сцепления искомого гена с набором точно локализованных генетических маркеров .
Центральное положение linkage-анализа заключается в том, что мерой относительного генетического расстояния между двумя локусами па хромосоме может служить частота рекомбинаций между этими локусами в результате кроссинговера гомологичных хромосом в мейозе. Чем ближе расположены локусы па хромосоме, I ем больше вероятность того, что они будут наследоваться как единое целое (группа сцепления); при значительной удаленности изучаемых локусов (т.е. слабой степени сцепления) они с большей вероятностью разойдутся после кроссинговера по разным хромосомам. Частота рекомбинации между локусами 1% принята за единицу

  1. енетического расстояния между ними - 1 сантиморга- ниду (сМ), что эквивалентно в среднем 1 миллиону п.о. Следует подчеркнуть, что частота рекомбинаций и, следовательно, генетическое расстояние, неодинаковы для мужчин и женщин (больше у женщин), для разных хромосом, а также для разных участков одной хромосомы («горячие точки» рекомбинации) .
Сущность анализа сцепления состой! в сопоставлении наследования патологического признака (болез-

Рис. 30. Принцип анализа генетического сцепления на примере аутосомно-доминантного заболевания В данном примере исследованы 4 сцепленных маркера А, В, С и D, по которым реконструированы гаплотипы. Разные по происхождению хромосомы маркированы различными типами штриховки (исходная мутантная хромосома обозначена черным цветом). Все больные в родословной имеют одну и ту же общую (среднюю) часть исходной мутантной хромосомы. Например, в нижнем поколении хромосомы претерпели ряд рекомбинаций, однако у всех больных сибсов (в том числе у лиц Ш-З и Ш-8) сохраняется один и тот же мутантный гаплотип по маркерам В и С (гаплотип у). Напротив, никто из здоровых сибсов в нижнем поколении не унаследовал от отца гаплотип j по маркерам В и С (индивидуум Ш-4 унаследовал хромосому, в которой рекомбинация произошла ниже критического сегмента). Таким образом, сегрегация маркерных аллелей и анализ гаплотипов свидетельствуют о том, что ген заболевания расположен в хромосомном сегменте, включающем в себя маркеры В и С. Соответственно, внешними границами участка хромосомы, в пределах которого расположен мутантный ген, являются маркеры А и D.
и тот же аллель исследуемого маркера, это свидетельствует об отсутствии рекомбинаций между искомым мутантным геном и данным маркером, т.е. о наличии сцепления между ними. Пример сцепления между геном аутосомно-доминантного заболевания и определенными генетическими маркерами представлен на рис. 30.
Для достоверного доказательства сцепления разработан специальный математический аппарат . Принцип расчета заключается в сопоставлении вероятностей гипотез о наличии и отсутствии сцепления при имеющихся семейных данных и выбранной частоте рекомбинаций 0; соотношение этих двух вероятностей (соотношение правдоподобий) выражает шансы за и против сцепления. Для удобства используется десятичный логарифм соотношения правдоподобий - Лод- балл (от англ. Logarithm of the Odds, или LOD):
Po
LOD = Logio --
P1/2 , где P - вероятность
полученного распределения семейных данных для сцепленных генов с частотой рекомбинаций 0, Р - вероятность такого распределения для двух несцепленных свободно рекомбинирующих генов (частота рекомбинаций 0 = 1/2). Использование логарифмической формы расчета позволяет проводить сложение 27од-баллов, полученных при анализе отдельных родословных. Для доказательства генетического сцепления принято значение Лод- балла +3, которое означает соотношение шансов 1000:1 в пользу наличия генетического сцепления междgt; маркером и изучаемым признаком. Лод-балл -2 и ниже свидетельствует о достоверном отсутствии сцепления; значения Лод-балла от +3 до - 2 являются, соответственно, более или менее предположительными с точки зрения наличия сцепления и нуждаются в дальнейшем подтверждении. Частота рекомбинаций 0, для которой был выявлен максимальный Л од-балл, является отражением наиболее вероятного генетического расстояния между изучаемыми локусами; ориентировочно считается, что 1% рекомбинаций свидетельствует об очень тесном сцеплении, частота рекомбинаций около 5% - о хорошем сцеплении и частота 10-20% - о некотором умеренном сцеплении.
Расчет Лоб-баллов предполагает использование специального компьютерного программного обеспечения (программа LIPED, пакет программ LINKAGE и др.) .
Для успеха linkage-анализа необходимо, чтобы исследуемые семьи были информативны по болезни и по генетическому маркеру. Первое означает наличие достаточного числа информативных мейозов в родословной, позволяющих анализировать расхождение признаков в данной родословной. С практической точки зрения это означает наличие большого числа доступных для анализа больных и здоровых родственников, как правило, из нескольких поколений. Информативность по маркеру предполагает его полиморфизм (т.е. существование большого числа аллелей) и гетерозиготность у ключевых членов семьи, что позволяет дифференцировать генетическое происхождение конкретных аллелей маркера. До конца 80-х годов основным типом маркеров, используемых в анализе сцепления, были участки ДНК хромосом, имеющие в своем составе вариацию в одной паре оснований и различаемые по наличию или отсутствию участка рестрикции для соответствующего фермента, т.е. по длине рестрикционных фрагментов («restriction fragment length polymorphism», RFLP) . Новая эра в генетическом картировании наступила с открытием класса высокополиморфных маркеров, представляющих собой участки ДНК, состоящие из вариабельного числа копий тандемных (СА)п-повторов и обладающие чрезвычайно высокой гетерозиготностью . Это позволило в значительной степени разрешить проблему информативности используемых маркеров и способствовало существенному прогрессу linkage-анализа. По некоторым оценкам, для скрининга полного гаплоидного генома и выявления генетического сцепления необходимо иметь 200-300 высокополиморфных маркеров, равномерно распределенных по хромосомам . Генетические карты последнего поколения включают свыше 5000 таких маркеров , что позволяет считать сегодня задачу установления генетического сцепления принципиально возможной в любых информативных родословных .
Серьезных проблемой, с которой приходится сталкиваться при проведении анализа сцепления на серии семей, является проблема возможной генетической гетерогенности изучаемого клинического синдрома. В случае, если изучаемый фенотип может вызываться мутациями в разных генах, механическое сложение полученных в отдельных семьях положительных (при наличии сцепления) и отрицательных (при его отсутствии) Лод- баллов ведет к нивелированию суммарного значения Лод- балла и ложному выводу о полном отсутствии сцепления. Примером может служить аутосомно-доминантная моторно-сенсорная невропатия 1 типа, обусловленная мутациями в разных генах, локализованных на 1-й, 17-й и других хромосомах . В этой ситуации особое значение приобретает тщательное, детальное обследование больных и семей, направляемых для linkage-анализа, с целью отбора максимально однородных клинических групп. Дополнитеёгьным способом избежать ложно-отрицательного результата исследования является использование в процессе расче

та,/7од-баллов специальной программы HOMOG или аналогичных ей программ, позволяющих оценивать вероятность генетической гетерогенности при полученном конкретном наборе семейных данных . Наиболее действенным подходом на первом этапе исследования является анализ сцепления в одной большой информативной родословной, что позволяет заведомо иск почить возможность генетической гетерогенности в изучаемой группе больных. Дополнительные сложности при проведении linkage-анализа связаны с нередко наблюдающейся неполной пенетрант- ностью и вариабельной экспрессивностью мутантного гена, наличием фенокопий среди обследуемых членов семьи, оценкой возраста начала болезни и возможности доклинического носительства мутации, оценкой распространенности конкретных аллелей изучаемых маркеров в популяции и т.д. . Неверный учет или недооценка этих факторов могут существенно повлиять на итоговый результат, поэтому качество подробного клинико-генеалогического анализа в изучаемых семьях выступает на первый план.
Разработано много новых методов, представляющих из себя дальнейшее развитие традиционной стратегии исследования генетического сцепления и существенно повышающих скорость выполнения, методические возможности и разрешающую способность данного анализа в локализации неизвестных генов наследственных заболеваний человека. Одним из таких методов является мультилокусный анализ (multipoint linkage analysis), позволяющий оценивать Лод-баллы для совокупности сцепленных локусов в соответствии с генетической картой изучаемого хромосомного участка и определять наиболее вероятную локализацию мутантного гена в пределах данного участка . В инбредных

родословных с аутосомно-рецессивным заболеванием при наличии предположения об «эффекте основателя» исключительно продуктивным зарекомендовал себя метод гомозиготного картирования: он заключается в анализе «го- мозиготности по происхождению» {«homozygosUy-by- descent») и позволяет оценить степень гомозиготлости больных лиц по серии маркеров как результат наследования от единого предка общего хромосомного участка, включающего мутантный ген . Многообещающим является метод «экономного сканирования генома», предполагающий преимущественное использование маркеров, локализованных в «стратегических» CG насыщенных хромосомных областях, богатых экспрессирующимися последовательностями . Предложен также целый ряд других модификаций классического linkage-анализа .
Важно подчеркнуть, что анализ сцепления сохранит свое значение и после идентификации всего генома человека . Например, при изучении все еще достаточно большой группы наследственных заболеваний с неустановленными генами первым шагом на пути к выяснению молекулярного дефекта может служить /ш/ш^е-апализ и определение хромосомного локуса болезни, с последующим скринингом подходящих генов в данной области. Чрезвычайно важной в успехе генетического картирования является роль клинициста. Она заключается в адекватном отборе репрезентативных семей, детальной оценке клинического статуса всех включенных в исследование членов семьи, точной диагностике болезни и оценке характера сегрегации мутантного гена, а также в решении многих других ключевых вопросов.

Slide 1

Выполнила: Голубева Ю.В. 410гр

Slide 2

Одна из основных задач современной генетики
заключается в выяснении природы комплексных
признаков, к которым в частности относятся
многие распространенные болезни человека и
характеристики продуктивности
сельскохозяйственных животных. Стартовым
этапом на пути решения этого вопроса
является

Slide 3

Картирование генов -

Slide 4

Стратегические подходы
к картированию геномов

Slide 5

Стратегия прямой
генетики

Различия во времени появления,
необходимой методической базой и
спектре возможностей. Функция гена
известна хотя бы частично.

Slide 6

Функциональное
картирование
 Основа - наличие некоторой информации о
биохимическом полиморфизме, лежащем в
основе того или иного наследственного
признака.
 начинается с выделения в чистом виде
белкового продукта гена.
 к нему по аминокислотной последовательности
подбирают вырожденные праймеры

 проводят ПЦР-скрининг

Slide 7

Большинство генов, функция которых
была известна, уже клонированы и
локализованы.

Slide 8

Для большинства генов, которые
были локализованы, характерны
структурные аномалии (как
правило, это гены, ответственные за
наследственные заболевания
человека), что существенно
облегчает заключительную стадию
поиска гена - выделение и
локализацию гена.

Slide 9

Кандидатное
картирование
информация о функциональном
изменении недостаточно полна, чтобы
точно указать ген
Информации достаточна для того,
чтобы выдвинуть предположения о
возможных кандидатах либо по их
функции, либо по положению на
хромосоме

Slide 10

Общее:
при функциональном, и при
кандидатном подходе клонирование
гена, как правило, предшествует его
точной локализации в геноме

локализовать ген означает пройти путь
от его функции к локализации на
хромосоме (позиции)

Slide 11

Стратегия обратной
генетики

От хромосомной карты к функции
гена. Возникло благодаря появление в
конце 80-х годов множества
высокополиморфных ДНК-маркеров

Slide 12

Позиционное
картирование
локализация гена при отсутствии всякой
функциональной информации о нем
место гена на карте устанавливают по
результатам анализа его сцепления с
ранее локализованными генетическими
маркерами, далее исследуется уже
область генома рядом с маркером

Slide 13

Генетический маркёр
(genetic marker)
Ген, детерминирующий
отчетливо выраженный
фенотипический признак,
используемый для
генетического картирования
и индивидуальной
идентификации организмов
или клеток. Также в качестве
генетических маркеров
могут служить целые
(маркерные) хромосомы.

Slide 14

Минусы
ограничением позиционного
подхода является низкая
разрешающая способность
генетических карт - интервал между
двумя соседними маркерами, в
котором локализован ген, может
оказаться слишком велик и
недоступен физическому
картированию.

Slide 15

Картирование генов –
виды
Физическое картирование
Генетическое картирование
Цитогенетическое(цитологическое)
картирование

Slide 16

Физическое
картирование
обширная группа методов, позволяющая строить
карты генома (обычно их называют физическими)
высокого уровня разрешения и определять
расстояния между локализуемыми нуклеотидными
последовательностями с точностью от нескольких
десятков тысяч п.н. до одной нуклеотидной пары.

Пример: картирование
генов с помощью
хромосомных мутаций

Slide 17

Типы физического
картирования
рестрикционное картирование
RH-картирование
клонирование в YAC (от англ. yeast artificial
chromosome)
BAC (от англ. bacterial artificial
chromosome) в космидах, плазмидах и
других векторах и контиг-картирование на
их основе
секвенирование ДНК

Slide 18

В том случае, когда известна
последовательность ДНК интересующего
локуса, эту последовательность можно
использовать для гибридизации с
хромосомами in situ, и место гибридизации
будет однозначно указывать на локализацию
локуса в определенном районе определенной
же хромосомы

Slide 19

Генетическое
картирование
картирование, основанное
на методах классической
генетики - определении
групп сцепления, частоты
рекомбинации и
построении генетических
карт, где единицей
измерения служат
проценты рекомбинации

Slide 20

Первый ген человека
был локализован на
Х-хромосоме в 1911
г.

Первый аутосомный
ген - только в 1968 г

Slide 21

Генетическая карта
(genetic map
Схема взаимного
расположения генов на
хромосоме (в группе
сцепления) и их
распределения по
разным хромосомам,
как правило,
включающая данные об
относительном
удалении генов друг от
друга (генетические
расстояния).

Slide 22

Генетическая карта
американской норки
включает 127 генов
(черный текст) и 39
микросателлитных
последовательностей
(красным текст).
Разным цветом
выделены районы
хромосом норки
гомологичные
хромосомным.

Slide 23

Преимущества
большое число консервативных групп
сцепления
создание банков клеточных культур
для локализации вновь возникшей
мутации к настоящему моменту есть
набор маркерных генов для каждой
хромосомы.

Slide 24

Построение
генетической карты
Шаг 1: формирование групп
сцепления генов и исследование их
взаимного расположения(Скрещивания
проводятся до тех пор, пока не удастся выявить
сцепленное наследование анализируемой
мутации с маркерными мутациями какой-либо
хромосомы)

Шаг 2: подсчитывание расстояния
между исследуемым геном и уже
известными маркерными генами

Slide 25

Единицы измерения
Генетическое расстояние между линейно
расположенными генами, выраженно в процентах
рекомбинации -

Два гена на хромосоме
находятся на расстоянии 1
сМ, если вероятность
рекомбинации между ними
в процессе мейоза
составляет 1%.

Классический пример Моргана –
расстояния между генами
дрозофилы

Slide 26

4 степени надежности
локализации данного гена
подтвержденная (установлена в двух и
более независимых лабораториях или на
материале двух и более независимых тестобъектов),
предварительная (1 лаборатория или 1
анализируемая семья),
противоречивая (несовпадение данных
разных исследователей),
сомнительная (не уточненные
окончательно данные одной лаборатории)

Slide 27

Минусы:
частота рекомбинации в
разных точках генома
различна, и расстояние
может существенно
варьировать

Необходим
тщательный
анализ
родословной
(если
картируется ген
заболевания)

в результате карты
сцеплений не отражают
реальных физических
расстояний между
маркерами и генами
на хромосомах.

Slide 28

Цитогенетическое
картирование
осуществляется с применением
методов цитогенетики, когда для
локализации каких-либо
нуклеотидных
последовательностей и
определения их взаимного
расположения используются
цитологические препараты

Slide 29

Цитологические карты
Метод цитологических карт основан на
использовании хромосомных перестроек –
перекрывающихся делеций.

При облучении и действии других
мутагенов в хромосомах часто
наблюдаются потери (делеции)
или вставки (дупликации)
небольших фрагментов,
сравнимых по величине с одним
или несколькими локусами.

Slide 30

Принципы:
Используются гетерозиготы по хромосомам, одна из которых
будет нести группу следующих друг за другом доминантных
аллелей, а гомологичная ей - группу рецессивных аллелей тех же
генов.
Если в хромосоме с доминантными генами произошла утрата
отдельных генов, например DE, то у гетерозиготы ABC/abcde будут
проявляться рецессивные признаки de. На этом принципе основан
метод перекрывающихся делеции, используемый при построении
цитологических карт.

Slide 31

Методы
дифференциального
окрашивания позволяют
идентифицировать на
препарате как отдельную
хромосому, так и любой
участок хромосомы

Разработанный на дрозофиле
специальный метод
перекрывающихся делеций был
использован для
цитологического картирования
генов у представителей многих
видов.

Slide 32

Хромосомные комплексы китайского хомячка
(А), мыши (Б) и их соматического гибрида (В)

Slide 33

Сравнение генетических и
цитологических карт хромосом
показывает их соответствие:
чем больший процент
кроссинговера разделяет пару
генов, тем больше и физическое
расстояние между ними.

Slide 34

Запись локализации
гена
Согласно официально утвержденной номенклатуре
(ISCN,1978), каждая хромосома человека после
дифференциальной окраски может быть разделена на
, нумерация которых начинается от
центромеры вверх (
), либо вниз
).
в каждом
участке тоже нумеруются в аналогичном порядке. Крупные
полосы разделяются на более мелкие

Slide 35

Slide 36

Алгоритм решения
задач на картирование
генов

Slide 37

Пример:
Составьте карту хромосомы,
содержащую гены, если
частота кроссинговера между
генами и равна 2,5%, и -
3,7%, и -6%, и - 2,8%, и -
6,2%, и - 15%, и - 8,8%

Slide 38

Slide 39

Используемая
литература
Э. Р. Рахманалиев, Е. А. Климов, Г. Е. Сулимова МЕТОДЫ
КАРТИРОВАНИЯ ГЕНОМОВ МЛЕКОПИТАЮЩИХ.
КАРТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ РАДИАЦИОННЫХ
ГИБРИДОВ (RH КАРТИРОВАНИЕ)
Аксенович Т.И. Проблемы картирования QTL (Институт
цитологии и генетики СО РАН, Новосибирск)
Мяндлина Г.И. Молекулярные основы медицинской
генетики(кафедра биологии и общей генетики,
медицинского факультета РУДН)
В.И. Иванов Генетика Учебник для вузов, 2006

Картирование генов gene mapping, mapping - картирование генов.

Oпределение положения данного гена на какой-либо хромосоме относительно других генов; используют три основные группы методов К.г. - физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний - в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ <in situ hybridization >, получение монохромосомных клеточных гибридов <monochromosomal cell hybrid >, делеционный метод <deletion mapping > и др.); в генетике человека приняты 4 степени надежности локализации данного гена - подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест-объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории); в Приложении 5 приведена сводка (по состоянию на 1992-93) структурных генов, онкогенов и псевдогенов в геномах человека и - включая некоторые мутации - мыши.

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Смотреть что такое "картирование генов" в других словарях:

    картирование генов - Определение положения данного гена на какой либо хромосоме относительно других генов; используют три основные группы методов К.г. физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза… …

    Картирование генов - определение положения данного гена на какой либо хромосоме относительно других генов. Генетическое картирование предполагает определение расстояний по частоте рекомбинаций между генами. Физическое картирование использует некоторые методы… … Словарь по психогенетике

    картирование [генов] с помощью бэккроссирования - Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных фрагментов; наиболее распространен данный метод в картировании генов у… … Справочник технического переводчика

    Backcross mapping картирование [генов] с помощью бэккроссирования. Генетический метод картирования, основанный на получении бэккроссных гибридов родственных форм и анализе расщепления вариантов аллелей, полиморфных по длинам рестрикционных… …

    Картирование сравнительное генов млекопитающих - * картаванне параўнальнае генаў млекакормячых * comparative mapping of mammalian genes информативное сопоставление генетических карт человека и любого из др. видов млекопитающих). Они должны быть одновременно хорошо изучены и далеко отстоять друг …

    Картирование - * картаванне * mapping установление позиций генов или каких то определенных сайтов (см.) вдоль нити ДНК (. Карта) … Генетика. Энциклопедический словарь

    Картирование с помощью облученных гибридов [клеток] - * картаванне з дапамогай апрамененых гібрыдаў [клетак] * radiated hybrid mapping модификация метода картирования генов с использованием гибридизации соматических клеток. Клетки гибридного клона «грызун Ч человек», содержащие только хромосому 1… … Генетика. Энциклопедический словарь

    Radiation hybrid mapping картирование с помощью облученных гибридов [клеток]. Модификация метода картирования генов с использованием гибридизации соматических клеток клетки гибридного клона “грызун ˟ человек”, содержащие только 1 хромосому… … Молекулярная биология и генетика. Толковый словарь.

    Установление порядка расположения генов и относительного расстояния между ними в группе сцепления … Большой медицинский словарь