Системный анализ проблемы. Понятие «проблемы» в системном анализе Системный анализ в структуре современных системных исследований

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между элементами исследуемых сложных систем - технических, экономических и т.д. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Проводится с использованием современных средств вычислительной техники. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития, технической системы, региона, коммерческой структуры и т.д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: теории операций и общей теории управления и системном подходе.

Целью системного анализа является упорядочение последовательности действий при решении крупных проблем, основываясь на системном подходе. В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы. Приемы и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности.

Системный анализ базируется на ряде общих принципов, среди которых:

    принцип дедуктивной последовательности - последовательного рассмотрения системы по этапам: от окружения и связей с целым до связей частей целого (см. этапы системного анализа подробнее ниже);

    принцип интегрированного рассмотрения - каждая система должна быть неразъемна как целое даже при рассмотрении лишь отдельных подсистем системы;

    принцип согласования ресурсов и целей рассмотрения, актуализации системы;

    принцип бесконфликтности - отсутствия конфликтов между частями целого, приводящих к конфликту целей целого и части.

2. Применение системного анализа

Область применения методов системного анализа весьма широка. Существует классификация, согласно которой все проблемы, к решению которых можно применить методы системного анализа, подразделяются на три класса:

    хорошо структурированные (well-structured), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;

    неструктурированные (unstructured), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;

    слабо структурированные (ill-structured), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Привлечение методов системного анализа для решения указанных проблем необходимо, прежде всего, потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. В этом случае все процедуры и методы направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Специалисты только готовят или рекомендуют варианты решения, принятие же решения остаётся в компетенции соответствующего должностного лица (или органа).

Для решения слабо структурированных и неструктурированных проблем используются системы поддержки принятия решений.

Технология решения таких сложных задач может быть описана следующей процедурой:

    формулировка проблемной ситуации;

    определение целей;

    определение критериев достижения целей;

    построение моделей для обоснования решений;

    поиск оптимального (допустимого) варианта решения;

    согласование решения;

    подготовка решения к реализации;

    утверждение решения;

    управление ходом реализации решения;

    проверка эффективности решения.

Центральной процедурой в системном анализе является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным внешним воздействиям.

Исследования опираются на ряд прикладных математических дисциплин и методов, широко используемых в современной технической и экономической деятельности, связанной с управлением. К ним относятся:

    методы анализа и синтеза систем теории управления,

    метод экспертных оценок,

    метод критического пути,

    теория очередей и т. п.

Техническая основа системного анализа - современные вычислительные мощности и созданные на их основе информационные системы.

Методологические средства, применяемые при решении проблем с помощью системного анализа, определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы теории игр.

Несмотря на то, что диапазон применяемых в системном анализе методов моделирования и решения проблем непрерывно расширяется, он по своему характеру не тождествен научному исследованию: он не связан с задачами получения научного знания в собственном смысле, но представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

1.1.1 Определение понятия «системный анализ»

Понятие «системный анализ» состоит из двух слов «системный» или

«система» и «анализ» (рис. 1.1).

Рис. 1.1. Составляющие термина «системный анализ»

Зарубежные и российские учёные, рассматривая систему с различных позиций, выдвигают разнообразные характеристики этого понятия.

Волкова В.Н. и Денисов А.А. выделяют три этапа формирования определения «система».

Первый этап – характеристика системы с точки зрения её состава, структуры (например, определения в БСЭ, Л. Фон Берталанфи, С. Бир, Б.З. Мильнер). Например, С. Бир определял систему как «одно из названий порядка в противоположность хаосу».

На втором этапе развития представления о системе, определение

расширилось и стало включать в себя не только элементы и связи,

но и цель (например, определение системы, предложенное Р.Л. Аконфф,

С.Л. Оптнер, Е.П. Голубковым, В.Н. Спицнадель). Например, Р.Л. Акофф

рассматривал систему как «множество действий (функций), связанных во

времени и пространстве множеством практических задач по принятию

решений и оценке результатов, т.е. задач управления».

На третьем этапе формирования понятие системы стало включать в

себя упоминание о наблюдателе системы (например, описание анализируемого термина У. Эшби, Ю.И. Черняк, В.Н. Поповым, В.Н. Волковой, А.А. Денисовой).

Попов В.Н. термин «система» определяет как способ решения проблемы, которая «представляет собой выделенную исследователем закономерно обусловленную совокупность функционально взаимодействующих элементов, принципов и отношений».

Расширение, углубление, усложнение рассматриваемого понятия неразрывно связано с объективными закономерностями: с развитием, усложнением, расширением систем, взаимопроникновением различных систем друг в друга.

Обобщая вышесказанное, можно рассуждать о системности как об общей тенденции развития человеческого общества в целом и о системности результатов его воздействия как производных воздействия человечества.

Выделяются следующие признаки системности:

1) структурированность системы (структура), т.е. возможность разложения системы на составляющие;

2) взаимосвязанность её частей означает наличие связей между составными элементами системы;

3) подчинённость деятельности системы определённой цели предполагает создание и развитие системы для достижения определённой цели

(например, целью создания коммерческой организации является получение прибыли, целью создания налоговой системы – пополнение доходной

части бюджетов различных уровней за счёт налогов и сборов, целью создания системы образования – обучение и воспитание подрастающего поколения и т.д.);

4) целостность системы предполагает наличие границ между самой системой и её внешним окружением;

5) саморазвитие системы – адекватная реакция системы на оказываемые воздействия, приспосабливаемость к ним, адаптация.

Антонов А.В. рассматривает всю практическую деятельность человека

с позиции влияния системности : начиная от системности мышления и

заканчивая системным взаимодействием человека со средой (рис. 1.2).

1. Системность человеческого мышления проявляется в способности индивидуума разложить на составляющие общую проблему, выявить

заложенные в ней закономерности и разработать пути её решения. Успех

решения поставленной задачи зависит от того, насколько системны подходы к её решению.

2. Системность человеческого познания заложена в самом механизме сбора и обработки информации. Выделяют синтетический и аналитический образ мышления, которые являются противоположными по цели и назначению. Синтетическое мышление проявляется через систематизацию и обобщение накопленной информации, т.е. формирование сложного за счёт объединения простых компонент. Принцип действия аналитического мышления является противоположным, его применение позволяет перейти от сложных и глобальных вопросов к более частным и мелким их составляющим.

3. Системность результатов познания характеризуется в стремлении структурирования и моделирования полученной информации. В различных направлениях науки и техники широкое распространение получили различные классификации, которые позволяют систематизировать и обобщить накопленную информацию, с целью её упорядоченности и структурированности. Построение адекватных моделей, описывающих динамическое поведение материальных объектов, упрощает процесс систематизации полученной информации.

4. Системность среды , окружающей человека, объясняется стремлением к системности как естественному свойству природы. Формирование и развитие живой и неживой природы осуществляется по своим объективным законам и закономерностям, изучением которых и занимается человечество. Например, закон сохранения энергии, закон притяжения и многие другие.

5. Системность человеческого общества в целом отражается в принципиальных подходах к построению отдельных структур и в принципах их взаимодействия. Причём уровень системности имеет тенденции к увеличению, что является следствием развития человеческого общества.

Если во времена Первобытнообщинного строя люди жили общинами изолированно друг от друга, то в процессе развития человечества количество

контактов с людьми из других общин, деревень, городов, стран, континентов возрастает. Процессы социально-экономического развития оказываются взаимопроникающими, в настоящее время речь идёт о взаимопроникновении национальных культур, религий, финансово-экономических систем, экологических проблем, т.е. о глобализации процессов, в том числе и социально-экономических.

6. Системность взаимодействия человека со средой предполагает

необходимость учитывать последствия и особенности всех возможных

факторов, оказывающих воздействие на внешнюю среду и оценивать её

состояния в последующие периоды времени.

Рассматривая понятия «анализ» и «системный анализ», первоначально формируется впечатление схожести этих понятий. Рассмотрим предлагаемые определения этих понятий более детально. Определения понятия «анализ» представлены в табл. 1.1.

Таблица 1.1 - Подходы к определению понятия «анализ»

Источник Определение
Чудинов А.Н. . Анализ – (от греч. analyein – разбирать). 1) Разбор, разложение па составные части, элементы, расчленение; 2) способность ума разделять познаваемое понятие на составные части по его признакам
Ушаков Д.Н. Анализ – это: 1) метод исследования, состоящий в расчленении исследуемого предмета или явления; ант. синтез (филос.). Подвергнуть анализу понятие причинности; 2) разложение какого-нибудь вещества на составные его элементы, исследование их (ест.). Химический анализ. Микроскопический анализ. Сделать анализ мочи; 3) разбор, исследование отдельных частей предмета для суждения о целом. Грамматический анализ. Произвести анализ литературного произведения
Анализ – разложение, разбор, расследование
Экономический словарь Анализ – метод научного исследования (познания) явлений и процессов, в основе которого лежит изучение составных частей, элементов изучаемой системы. В экономике анализ применяется с целью выявления сущности, закономерностей, тенденций экономических и социальных процессов, хозяйственной деятельности на всех уровнях (в стране, отрасли, регионе, на предприятии, в частном бизнесе, семье) и в разных сферах экономики (производственная, социальная). Анализ служит исходной отправной точкой прогнозирования, планирования, управления экономическими объектами и протекающими в них процессами. Экономический анализ призван обосновывать с научных позиций решения и действия в области экономики, социально-экономическую политику, способствовать выбору лучших вариантов действий

Обобщая вышеприведённые определения понятия анализа, можно

его охарактеризовать как метод исследования, который состоит в разборе

целого на составные части и более детальном их изучении. Таким образом, термин «анализ» рассматривается как один из методов исследования

объекта, системы.

Понятие «системный анализ» раскрывается более широко. Определения системного анализа с позиций различных научных школ представлены в табл. 1.2.

Таблица 1.2 - Подходы к определению понятия «системный анализ»

Источник Определение
Большой энциклопедический словарь Системный анализ – совокупность методологических средств, используемых для под-готовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход, а также на ряд математических дисциплин и современных методов управления. Основная процедура – построение обобщённой модели, отображающей взаимосвязи реальной ситуации; техническая основа системного анализа – вычислительные машины и информационные системы
Экономический словарь и энциклопедический словарь экономики и права Системный анализ – это совокупность методов и средств исследования сложных, многоуровневых и многокомпонентных систем, объектов, процессов, опирающихся на комплексный подход, учёт взаимосвязей и взаимодействий между элементами системы. Системный анализ играет важную роль в процессе планирования и управления, при выработке и принятии управленческих решений
Философский энциклопедический словарь Системный анализ – это: 1) в узком смысле - совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного, технического характера; 2) в широком смысле термин «системный анализ» иногда употребляют как синоним системного подхода. Привлечение методов системного анализа для решения указанных проблем необходимо прежде всего потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. Процедуры и методы системного анализа направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности
Современная энциклопедия Системный анализ – совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход, а также на ряд математических методов и современных методов управления. Основная процедура – построение обобщённой модели, отображающей взаимосвязи реальной ситуации
Словарь бизнес-терминов Системный анализ – метод исследования, при котором взаимодействие разрозненных объектов представляется в виде системы, т.е. чёткой субординированной последовательности действий
Перегудов Ф.И., Тарасенко Ф.П. Системный анализ – междисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем
Моисеев Н.Н. Системный анализ – это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем – технических, экономических, экологических и др.
Антонов А.В. Системный анализ можно определить как дисциплину, занимающуюся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы
Волкова В.Н., Денисов А.А. Системный анализ: 1) применяется в тех случаях, когда задача (проблема) не может быть сразу решена с помощью формальных, математических методов, т.е. имеет место большая неопределённость проблемной ситуации и многокритериальность задачи; 2) уделяет внимание процессу постановки задачи и использует не только формальные методы, но и методы качественного анализа; 3) опирается на основные понятия теории систем и философские концепции, лежащие в основе исследования общесистемных закономерностей; 4) помогает организовать процесс коллективного принятия решения, объединяя специалистов различных областей знаний; 5) для организации процесса исследования и принятия решения требует обязательной разработки методики системного анализа, определяющей последовательность этапов проведения анализа и методы их выполнения, объединяющая методы из групп МАИС и МФПС;1 6) исследует процессы целеобразования и разработки средств работы с целями; 7) основным методом системного анализа является расчленение большой неопределённости на более обозримые, лучше поддающиеся исследованию (что и соответствует понятию анализ), при сохранении целостного (системного) представления определения об объекте исследования и проблемной ситуации (благодаря понятиям цель и целеобразование)
Лапыгин Ю.Н. Системный анализ – система методов исследования или проектирования сложных систем, поиска, планирования и реализации изменений, предназначенных для ликвидации проблем
Макрусев В.В. Системный анализ есть совокупность процедур, базирующихся на системных идеях, подходе, теориях и методах, объединённых целями и задачами анализа реального объекта, процесса или явления как системы 1 МФПС – методы формализованного представления систем, МАИС – методы активизации интуиции и опыта специалистов

Изучение различных определений системного анализа позволяет выделить четыре его трактовки.
Первая трактовка рассматривает системный анализ как один из конкретных методов выбора лучшего решения возникшей проблемы,

отождествляя его, например, с анализом по критерию стоимость - эффективность.

Такая трактовка системного анализа характеризует попытки обобщить наиболее разумные приемы любого анализа (например, военного, технического или экономического), определить общие закономерности его проведения.
В первой трактовке системный анализ - это, скорее, «анализ систем», так как акцент делается на объекте изучения (системе), а не на системности рассмотрения (учете всех важнейших факторов и взаимосвязей, влияющих на решение проблемы, использование определенной логики поиска лучшего решения и т.д.).
Согласно второй трактовке системный анализ - это логический прием мышления, противоположный синтезу (таблица 1.3).

Таблица 1.3 – Анализ и синтез как приемы мышления

Третья трактовка рассматривает системный анализ как любой анализ любых систем (иногда добавляется, что анализ на основе системной методологии) без каких-либо дополнительных ограничений на область его применения и используемые методы.
Согласно четвертой трактовке системный анализ - это вполне конкретное теоретико-прикладное направление исследований, основанное на системной методологии и характеризующееся определенными принципами, методами и областью применения. Он включает в свой состав как методы анализа, так и методы синтеза. Однако представляется правильной четвертая трактовка как наиболее адекватно отражающая направленность системного анализа и совокупность используемых им методов.
Следовательно, можно представить следующее определение системного анализа как совокупность процедур, теорий, системных представлений, подходов, методов, приёмов, инструментария, объединённых с целью разработки эффективного качественного управленческого решения. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами. Системный анализ характеризуется главным образом упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.
Системный анализ, по существу, является средством установления рамок для систематизированного и более эффективного использования знаний, суждений и интуиции специалистов; он обязывает к определенной дисциплине мышления.
Иными словами, системный анализ - это систематизированные методы оказания лицу, принимающему решение, помощи при выборе курса действий путем изучения всей проблемы в целом, определения конечных целей и различных путей их достижения с учетом возможных последствий.

1.1.2 Сущность, структура, принципы системного анализа

Необходимые атрибуты системного анализа как научного знания: наличие предметной сферы - системы и системные процедуры; выявление, систематизация, описание общих свойств и атрибутов систем; выявление и описание закономерностей и инвариантов (неизменений) в этих системах; актуализация закономерностей для изучения систем, их поведения и связей с окружающей средой; накопление, хранение, актуализация знаний о системах (коммуникативная функция). Весь окружающий мир - взаимодействующие объекты - системы. Цель системного анализа - выяснить эти взаимодействия, их потенциал и «направить их на службу человека», при этом необходима полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом. Основная задача системного анализа заключается в раскрытии содержания проблем, чтобы стали очевидны все основные последствия решений и их можно было бы учитывать в своих действиях. Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение. Чтобы лучше выполнить задачу необходимо руководствоваться основными идеями, применяемыми в системном анализе:Идея 1. При изучении сложного объекта главное внимание уделяется внешним связям объекта с другими системами, а не его детальной внутренней структуре, хотя последнее не исключается, то есть системный анализ – это макроподход.Идея 2. При изучении сложного объекта приоритет отдается его целям и функциям, из которых выводится структура (но не наоборот), то есть системный анализ – это подход функциональный.Идея 3. При решении проблем, связанных с системами, следует сопоставлять необходимое и возможное, желаемое и достижимое, эффект и имеющиеся для этого ресурсы. Иными словами следует всегда учитывать, какую «цену» придется заплатить за получение требуемого результата.Идея 4. При принятии решения в системах следует учитывать последствия решения для всех систем, которые оно затрагивает. Объект системного анализа в теоретическом аспекте - это процесс подготовки и принятия решений; в прикладном аспекте - различные конкретные проблемы, возникающие при создании и функционировании систем.
Следует отметить, что объект системного анализа является в то же время объектом целого ряда других научных дисциплин, как общетеоретических, так и прикладных.
Выделить предмет системного анализа не представляется возможным, поскольку решением различных конкретных проблем занимается целый ряд наук и других научных направлений.
В отличие от многих наук, главной целью которых является открытие и формулирование объективных законов и закономерностей, присущих предмету изучения, системный анализ в основном направлен на выработку конкретных рекомендаций, в том числе и на основе использования достижений теоретических наук в прикладных целях.
Все это дает основание говорить о двойственной природе системного анализа: с одной стороны, это теоретическое и прикладное научное направление, использующее в практических целях достижения многих других наук, как точных (математика), так и гуманитарных (экономика, социология), а с другой стороны - это искусство. В нем сочетаются объективные и субъективные аспекты, причем последние присущи как самому процессу системного анализа, так и процессу принятия решения на основе его данных. В последнем случае индивидуальные особенности лиц, принимающих решения (должностные, профессиональные, возрастные, обусловленные творческими навыками и жизненным опытом и т. д.), оказывают непосредственное влияние на окончательное решение проблемы.
Системный анализ - это научный, всесторонний подход к принятию решений. Вся проблема изучается в целом, определяются цели развития объекта управления и различные пути их реализации в свете возможных последствий. При этом возникает необходимость согласования работы различных частей объекта управления, отдельных исполнителей, с тем чтобы направить их на достижение общей цели. Применение феноменологического подхода (феноменологический подход в науке - это подход, по которому создается теория для наблюдаемых явлений) позволяет рассмотреть системный анализ через его характеристику по следующим критериям: сущности, структуре, классификационным признакам и признакам развития (эволюции) (рис. 1.3.).

Рис. 1.3. Критерии феноменологического подхода к системному анализу

Дадим характеристику этим критериям.

1. Сущность системного анализа рассмотрена выше. Она базируется на позитивной роли системного анализа в процессе принятия управленческого решения. Именно системный анализ позволяет принять более грамотное и взвешенное решение, которое базируется на многоаспектном рассмотрении возникшей проблемы и проведении расчётов по оптимально-подходящей методике. Смысл системного анализа базируется на возможности оперирования комплексом методов исследования систем, методик выработки и принятия решений при изучении поведения сложных систем и при управлении им.

2. Структура системного анализа . Она основывается на следующих

составляющих: методологии, теории, методах системного анализа (рис. 1.4).

Методология системного анализа базируется на философских концепциях, системном подходе, экономических концепциях, математическом аппарате.

Системный анализ в области теории использует понятийный аппарат,

теорию систем, теорию системного анализа, теорию принятия решений,

теорию менеджмента.

Наиболее обширной и разработанной областью системного анализа

является комплекс применяемых методов, которые укрупнённо можно

подразделить на методы:

Измерения;

Исследования;

Принятия решения.

Рис. 1.4. Структура системного анализа

3. Классификационные признаки . Классификация – это система законов, отображающая присущие в ней области действительности.

Область изучения системного анализа включает различные классификации, в основе которых лежат различные классификационные признаки. Например:

1) классификация признаков системности;

2) классификации систем. Понятие система включает свыше 20 классификационных признаков, например, по виду отображаемого объекта, по взаимодействию системы с внешней средой, по размерам системы, по

уровню сложности и прочие;

3) классификации методов моделирования систем (все методы описания систем условно подразделяются на вербальное описание проблемной ситуации и построение формальных моделей);

4) классификация методов, применяемых в процессе анализа поведения систем (классификационные признаки представлены на рис. 1.4);

5) классификация измерительных шкал (например, номинальные шкалы, порядковые шкалы, интервальные шкалы, шкалы отношений, шкалы разностей, абсолютные шкалы);

6) классификация моделей систем (статические модели и динамические модели) и прочие классификации.

4. Эволюция системного анализа . Системному анализу, как и любому

результату человеческого познания, присущи признаки системности, в

состав которых входит саморазвитие системы, т.е. её эволюция. Эволюционные процессы нашли своё отражение в формировании терминологического аппарата данной дисциплины, например, понятия «система» и «системный анализ». Этот вывод подтверждают исследования, проведённые в этой научной области В.Н. Волковой и В.Н. Козловым .

Основываясь на вышесказанном, можно выделить следующие направления эволюции системного анализа:

1. Расширение, укрупнение содержательной части понятийного аппарата. Разработка и введение новых понятий и терминов.

2. Расширение методологического базиса, что предполагает использование моделей, описывающих процессы в естественных науках применительно к экономическим и техническим системам. Например, модели, разработанные в рамках теории катастроф.

3. Переход от изучения частных случаев поведения систем к более общим.

4. Развитие и расширение применяемых методов системного анализа.

Системный анализ используется в тех случаях, когда стремятся исследовать объект с разных сторон, ком­плексно.

Принцип - это обобщенные опытные данные, это за­кон явлений, найденный из наблюдений.

Системный анализ базируется на ряде общих принципов.

1) единства – совместное рассмотрение системы как единого целого и как совокупности частей;

2) развития – учет изменяемости системы, ее спо­собности к развитию, накапливанию информации с уче­том динамики окружающей среды;

3) глобальной цели – ответственность за выбор гло­бальной цели. Оптимум подсистем не является оптиму­мом всей системы;

4) функциональности – совместное рассмотрение структуры системы и функций с приоритетом функций над структурой;

5) децентрализации – сочетание децентрализации и централизации;

6) иерархии – учет соподчинения и ранжирования частей;

7) неопределенности – учет вероятностного наступле­ния события;

8) организованности – степень выполнения решений и выводов;

9) оптимальности - выбор наиболее подходящего варианта развития;

10) интеграции - интегративные свойства объекта появляются в результате совмещения элементов до це­лого, а также в ходе совмещения функций во времени и в пространстве;

11) формализации (формальный - относящийся к форме, в противоположность сущности, т.е. несуществен­ный) - нацелен на получение количественных и комплекс­ных характеристик.

Необходимо отметить, что эти классические принципы системного анализа, но­сят, прежде всего, философский характер, постоянно развиваются, причем в разных направлениях.

Таким образом, согласно принципам системного анализа возникающая перед обществом та или иная сложная проблема должна быть рассмотрена в целостном контексте - как система во взаимодействии всех ее компонентов, чаще всего как организация компонентов, имеющая общую цель.

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

«НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ «ГОРНЫЙ»

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ

« СОВРЕМЕННЫЕ ПРОБЛЕМЫ СИСТЕМНОГО АНАЛИЗА И УПРАВЛЕНИЯ »

Направление подготовки: 220100 «СИСТЕМНЫЙ АНАЛИЗ И УПРАВЛЕНИЕ»

Квалификация (степень) выпускника: магистр

Формы обучения: очная

Составитель: проф. В. Н. Романов

Санкт-Петербург

Рабочая программа составлена с учетом требований ФГОС ВПО к содержанию и уровню подготовки выпускника по направлению подготовки 220100 № 000 от 01.01.2001 г. и в соответствии с рабочими учебными планами направления подготовки, утвержденными ректором Университета.

Составитель и научный редактор: профессор В. Н. Романов

1 Цели и задачи дисциплины.. 3

2 Место дисциплины в структуре ООП: 4

3 Требования к результатам освоения дисциплины: 5

4 Объем дисциплины и виды учебной работы.. 7

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами. 9

5.3 Разделы дисциплин и виды занятий. 11

6 Лабораторный практикум.. 11

7 Практические занятия (семинары) 12


Сборники задач. 14

б) Дополнительная литература. 14

в) Программное обеспечение. 15

г) Базы данных, информационно-справочные и поисковые системы.. 15

10 Материально-техническое обеспечение дисциплины.. 16

1. Цели и задачи дисциплины:

Целью изучения дисциплины ознакомление магистрантов с современными проблемами системного анализа и управления и подготовка их к самостоятельной исследовательской работе по специальности.

Задачи курса – приобретение и развитие компетентности, умения свободно ориентироваться в проблемах системного анализа и управления, способности к самостоятельному мышлению, возможности самостоятельного изучения современной научной литературы по избранной специальности.

2. Место дисциплины в учебном процессе:

Дисциплина «Современные проблемы системного анализа и управления» является одной из основных дисциплин фундаментального цикла в структуре ООП магистра, обеспечивает профессиональную эрудицию и формирует навыки самостоятельного научного исследования, является базой при изучении последующих дисциплин, связанных с анализом и моделированием систем.

Дисциплина изучается магистрантами в течение первого и второго семестров. Она создает основу для знакомства с современными научными проблемами в области системного анализа и управления и методами их решения.

Для изучения дисциплины необходимы знания из курсов высшей математики, физики, информатики (математический анализ, функциональный анализ, теория матриц, статистика, логика, системный анализ и принятие решений, знание основных физических законов, статистической физики, квантовой механики, специальной и общей теории относительности, общей картины мира, знание современных компьютерных технологий). Входные знания магистрантов должны соответствовать общекультурной компетентности в объеме ОК-1, 2, 3, 4, 5 и профессиональной компетентности в объеме ПК-1, 2, 3, 4 .

Знание современных проблем системного анализа и управления составляет фундамент избранной специальности, без которого невозможна успешная деятельность выпускника вуза в специальных областях технических наук, организации и управления большими системами.

3.Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на приобретение и развитие компетентности в общекультурной и профессиональной сфере. В частности, в сфере общей культуры – в объеме ОК-1, ОК-2, ОК-3, ОК-4 , ОК-6, ОК-7, ОК-8 . В профессиональной сфере – в объеме ПК-1, ПК-2, ПК-3, ПК-4, ПК-5, ПК-6, ПК-7, ПК-8, ПК-10, ПК-11, ПК-12, ПК-13.

В результате изучения дисциплины магистрант должен:

Иметь представление:

О взаимосвязи современных проблем системного анализа и управления с проблемами других научных областей.

Знать :

Методы анализа связности систем;

Методы анализа устойчивости и адаптивности систем;


Методы анализа сложности систем,

Методы принятия решений в системах в условиях неопределенности.

Методы решения многокритериальных задач оптимального управления.

Уметь:

Применять методы анализа и принятия решений в реальных ситуациях;

Решать прикладные задачи многокритериальной оптимизации и управления в конкретных условиях;

Формулировать системные задачи и находить методы их решения

Владеть:

Навыками системного мышления при решении научно-исследовательских и практических задач.

4.1. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет __5__ зачетных единиц.

Вид учебной работы

Всего часов

Семестры

Аудиторные занятия (всего)

В том числе:

Практические занятия (ПЗ)

Семинары (С)

Лабораторные работы (ЛР)

Самостоятельная работа (всего)

В том числе:

Курсовой проект (работа)

Расчетно-графические работы (РГР)

Другие виды самостоятельной работы:

Домашнее задание

Подготовка к зачету и экзамену (всего)

в том числе:

самостоятельное изучение теории и методов решения задач системного анализа и управления

изучение теории и методов при выполнении домашнего задания

изучение теории и методов при подготовке к защите РГР

изучение теории и методов при подготовке к практическим занятиям

изучение теории и методов при подготовке к защитам лабораторных работ

изучение теории и методов при подготовке к курсовому проектированию

работа со справочной научно-технической литературой

Общая трудоемкость час

4.2. Содержание дисциплины

4.3. Содержание разделов дисциплины

Наименование раздела дисциплины

Математическое описание системы и ее свойств.

Внешнее и внутреннее описание систем. Задача реализации. Описание на языке теории множеств и языке состояний. Связь «вход-выход». Системы с конечным числом состояний. Выбор удобного описания. Класс автоматов. Описание на языке энтропии и потенциальных функций. Стохастические системы. Идентификация. Роль ограничений в системе. Понятие нечеткого множества и его применение для описания систем, основные операции на нечетком множестве, функция принадлежности и ее определение. Нечеткая арифметика. Нечеткие множества высшего порядка. Глобальные свойства больших систем: размерность, сложность, связность, устойчивость, непредсказуемость поведения. Структурная устойчивость систем. Катастрофы и адаптируемость систем. Типы сложности систем и способы определения. Структурная, динамическая и вычислительная сложность. Связь между структурной и динамической сложностью. Аксиомы сложности. Классификация системных задач по вычислительной сложности. Машина Тьюринга.

Методы анализа связности и сложности систем.

Связность структуры больших систем. Описание связности с помощью графа. Симплексы, комплексы и многомерные связи. Эксцентриситет. Понятие гомотопии. Дыры и препятствия. Цепи и границы. Расширение понятия топологической связности. Покрытия, разбиения и иерархия. Построение разрешающих форм. Алгебраическая связность. Линейные и нелинейные системы. Полугруппы и узловые соединения. Теорема декомпозиции Крона – Роудза и ее применение. Декомпозиция аналитических систем. Структурная сложность и иерархия. Схема связности. Понятие многообразия. Уровни взаимодействия. Динамическая сложность и проблема различных шкал времени. Сложность автоматов. Эволюционная сложность. Топологическая сложность. Сложность и теория информации.

Методы анализа устойчивости и адаптивности систем.

Использование внешнего и внутреннего описания для анализа устойчивости систем. Структурная устойчивость. Связная устойчивость и адаптивность. Графы и процессы распространения возмущений в системе. Устойчивость системы «черный ящик» с обратной связью. Внутренние модели и устойчивость. Бифуркация Хопфа. Структурно-устойчивые динамические системы. Теория катастроф и ее использование при решении системных задач. Типы особенностей. Катастрофа типа сборки. Устойчивость по возмущению и по начальному значению. Адаптивность динамических процессов. Адаптивность и катастрофы. Системы Морса – Смейла и адаптивность.

Проблемы управления и принятия решений.

Основные задачи системного анализа в управлении. Активное и пассивное управление. Эволюционные системы. Управляемые и неуправляемые системы. Область достижимости. Особенности границы достижимости. Устойчивость управления и обратная связь. Устойчивость по Ляпунову. Управление бифуркацией . Управляемая адаптивность. Понятие об управлении сингулярными распределенными системами. Проблема оптимизации в принятии решений. Проблема выбора и сложность. Одноцелевые и многоцелевые модели принятия решений. Полезность вариантов решений. Риск и его оценка. Эвристические методы поиска решения. Применение теории нечетких множеств к решению задач оптимального выбора. Функциональный подход, основанный на введении нечеткой меры расстояния. Нечеткая классификация, нечеткая логика. Задачи оптимального управления при многих критериях. Дискретные многокритериальные задачи и задачи с непрерывным временем. Марковские модели принятия решений.

4.4. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

Наименование обеспечиваемых (последующих) дисциплин

№ № разделов данной дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин

Структурный анализ и синтез систем

Основы экспертизы систем на основе анализа данных

Методы многокритериальной оптимизации

Программное обеспечение теории моделирования и принятия решений

Теория принятия решений

Управление в системах диагностики

Методы системного анализа данных

Теория и методы учета неопределенности функционирования сложных систем

Современные компьютерные технологии в науке

Основы теории эффективности сложных систем

Методы научных исследований технических и социально-экономических систем

Научно-исследовательская работа

Научно-исследовательская практика

Педагогическая практика

5.3.1. Разделы дисциплины и виды занятий

6.1. Лабораторный практикум в компьютерном классе

№ раздела дисциплины

Наименование лабораторных работ

Трудо-емкость

1.Математическое описание системы и ее свойств

Математическое моделирование систем

2. Методы анализа связности и сложности систем

Определение связности и сложности систем

3. Методы анализа устойчивости и адаптивности систем

Определение устойчивости и адаптивности линейных систем

Исследование моделей управления с обратной связью

4. Проблемы управления и принятия решений

Принятие решений методом собственных значений в условиях неопределенности

4. Проблемы управления и принятия решений

Выбор решающего правила в нечеткой классификации

7.1. Практические занятия (семинары)

№ раздела дисциплины

Тематика практических занятий (семинаров)

Трудо-емкость

Теоретико-множественное описание систем

Системы с конечным числом состояний

Нечеткие модели описания систем

Типы сложности систем и способы их определения

Описание связности с помощью графа

Топологический анализ систем

Покрытия, разбиения и иерархия

Анализ устойчивости систем

Анализ адаптивности систем

Управление с обратной связью

Выбор критериев оптимальности при принятии решений в условиях неопределенности

Нечеткие модели принятия решений

Нечеткая классификация

Нечеткая логика

8. Курсовая работа не предусмотрена учебным планом

9. Учебно-методическое и информационное обеспечение дисциплины

а). Основная литература

1. Н. Техника анализа сложных систем: Учебное пособие. СПб.: Изд-во СЗТУ, 2011.

2. Н. Основы системного анализа: Учебно-методический комплекс. СПб.: Изд-во СЗТУ, 2008.

3. Н. Нечеткие системы. СПб.: Издательство «ЛЕМА», 2009.

4. Элементарная теория устойчивости и бифуркаций / М.: Мир, 1983.

5. Касти Дж. Большие системы. М.: Мир, 1982.

7. Макаров И. М. Теория выбора и принятия решений / И. М. Макаров, Т. М. Виноградская, А. А. Рубчинский. М.: Наука, 1983.

б). Дополнительная литература

8. Айзерман М. А. Выбор вариантов. Основы теории / М. А. Айзерман, Ф. Т. Алескеров. М.: Наука, 1990.

9. Беллман Р. Принятие решений в расплывчатых условиях / Р. Беллман, Л. Заде // Вопросы анализа и процедуры принятия решений: Сб. переводов. Под ред. И. Ф. Шахнова. М.: Мир., 1976.

10. Борисов A. M. Обработка нечеткой информации в системах принятия решений / A. M. Борисов, А. Б. Алексеев, Г. В. Меркурьева. М.: Радио и связь, 1989.

11. Винер Н. Кибернетика, или управление и связь в животном и машине. М.: Наука, 1989.

12. Волкова В. Н. Теория систем и методы системного анализа в управлении и связи / В. Н. Волкова, В. А. Воронков, А. А. Денисов. М.: Радио и связь, 1983.

13. Гиг Дж., ван. Прикладная общая теория систем: В 2-х книгах. М.: Мир, 1981.

14. Глушков В. М. Моделирование развивающихся систем / В. М. Глушков, В. В. Иванов, В. М. Яненко. М.: Наука, 1983.

15. А. Многокритериальные модели формирования и выбора вариантов систем / Ю. А. Дубов, С. И. Травкин, В. Н. Якимец. М.: Наука, 1986.

16. Дюбуа Д . Теория возможностей / Д. Дюбуа, Д. М. Прад. Радио и связь, 1990.

17. Г. Сложные технические системы. М.: Высшая школа, 1984.

18. Калман Р. Очерки по математической теории систем / Р. Калман, П. Фалб, М. Арбиб. М.: Мир, 1971.

19. Квейд Э. Анализ сложных систем. М.: Сов. Радио, 1969.

20. Л. Принятие решений при многих критериях: предпочтения и замещения / Р. Л. Кини, X. Райфа. М.: Радио и связь, 1981.

21. Системный анализ и целевое управление / Д. Клиланд, В. Кинг. М.: Сов. Радио, 1974.

22. Клир Дж. Системология. Автоматизация решения системных задач. М.: Радио и связь, 1990.

23. Кофман А. Введение в теорию нечетких множеств. М.: Радио и связь, 1982.

24. И. Объективные модели и субъективные решения. М.: Наука, 1987.

25. Лорьер Ж.-Л. Системы искусственного интеллекта. М.: Мир, 1991.

26. Мелентьев Л. А. Системные исследования в энергетике. М.: Наука, 1987.

27. Месарович М. Теория иерархических многоуровневых систем / М. Месарович, Д. Мако, И. Такахара. М.: Мир, 1973.

28. Месарович М. Общая теория систем: Математические основы / М. Месарович, И. Такахара. М.: Мир, 1976.

29. Н. Математические задачи системного анализа. М.: Наука, 1981.

30. Методы принятия технических решений / Э. Мушик, П. Мюллер. М.: Мир, 1990.

31. Науман Э. Принять решение − но как? М.: Мир, 1987.

32. Негойце К. Применение теории систем к проблемам управления. М.: Мир, 1981.

33. Нечеткие множества и теория возможностей. Сб. переводов. Под ред. Р. Ягера. М.: Радио и связь, 1986.

34. Нечипоренко В. И. Структурный анализ систем. М.: Сов. Радио, 1977.

35. Оптнер С. Системный анализ для решения деловых и промыш­ленных проблем. М.: Сов. радио, 1969.

36. Орловский С. А. Проблемы принятия решений при нечеткой исходной информации. М.: Наука, 1981.

37. Пантл А. Методы системного анализа окружающей среды. М.: Мир, 1979.

38. Перегудов Ф. И. Введение в системный анализ / Ф. И. Перегудов, Ф. П. Тарасенко. М.: Высшая школа, 1989.

39. Подиновский В. В. Парето-оптимальные решения многокритериальных задач / В. В. Подиновский, В. Д. Ногин. М.: Наука, 1982.

40. Прикладные нечеткие системы. Сб. переводов. Под ред. Т. Терано. М.: Мир, 1993.

41. Н. Основы системного анализа: Учебное пособие. СПб.: СЗПИ, 1996.

42. Н. Системный анализ. СПб.: СЗТУ, 2005.

43. Н. Системный анализ для инженеров. СПб.: СПб. государственный университет, 1998.

44. Романов В. Н. Интеллектуальные средства измерений / В. Н. Романов, B. C. Соболев, Э. И. Цветков. М.: РИЦ "Татьянин день", 1994.

45. Росс Введение в кибернетику. М.: ИЛ, 1959.

46. Саати Т. Аналитическое планирование. Организация систем / Т. Сааати, К. Кернс. М.: Радио и связь, 1991.

47. Н. Основания общей теории систем. М.: Наука, 1974.

48. Саркисян С. А. Анализ и прогноз развития больших технических систем / С. А. Саркисян, В. М. Ахундов, Э. С. Минаев. М.: Наука, 1983.

49. Современные методы идентификации систем. Под ред. Эйкхоффа. − М.: Мир. − 1983.

50. Н. Транспортно-производственные системы. Киев: Наукова думка, 1986.

51. Ю. Анализ данных методами многомерного шкалиро­вания. М.: Наука, 1986.

52. Теория полезности для принятия решений. М.: Наука, 1978.

53. С. Элементы теории потенциальной эффективности сложных систем. М.: Сов. Радио, 1971.

54. Форрестер Дж. Мировая динамика. М.: Мир, 1978.

55. Форрестер Дж. Основы кибернетики предприятия. М.: Прогресс, 1971.

56. Теория гомологий / П. Хилтон, С. Уайли. М.: Мир, 1966.

57. А. Методы синтеза систем в целевых программах . М.: Наука, 1987.

58. Многокритериальная оптимизация. М.: Радио и связь, 1992.

59. Экспертные системы. Сб. переводов. Под ред. Р. Форсайта. М.: Мир, 1966.

в). Программное обеспечение

    операционные системы Microsoft Windows; стандартные офисные программы Microsoft Office и OpenOffice; Math Soft Apps; MatLab 6.5; пакет обучающих программ к виртуальным лабораторным работам LabWorks Supervisor Workplace 1.2; портал «Гуманитарное образование» http://www. humanities. edu. ru/; федеральный портал «Российское образование» http://www. edu. ru/; федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection. edu. ru/; портал Росаккредагенства http:// www. fepo. ru/ . Интернет-тестирование базовых знаний. специализированные программы по принятию решений и системному анализу на сайте автора http://www. vadim-romanov. ucoz. ru

г). Базы данных, информационно-справочные и поисковые системы

    электронная база данных учебно-методической литературы кафедры общей и технической физики (ОТФ) СПГГУ;

· электронные версии учебников, пособий, методических разработок, указаний и рекомендаций по всем видам учебной работы, предусмотренных вузовской рабочей программой, находящиеся в свободном доступе для студентов, обучающихся в вузе, на внутрисетевом сервере http://www. spmi. ru/;

    научная Электронная Библиотека http://www. e-library. ru;. информационная система «Единое окно доступа к образовательным ресурсам» (http://window. edu. ru/); рекомендуемые поисковые системы http://www. yandex. ru/, http://www. google. ru/, http://www. google. сom/ и др. личный сайт автора http://www. vadim-romanov. ucoz. ru

10. Материально-техническое обеспечение дисциплины

1. Аудитории, оснащенные компьютером и мультимедийным оборудованием для проведения лекционных и практических занятий.

2. Для проведения лабораторных занятий необходима специализированная лаборатория, оснащенная специализированными программами по системному анализу с возможностью: проводить виртуальные компьютерные исследования, работать с электронными изданиями вуза и доступа в Интернет, оборудованная необходимым количеством рабочих мест и доступностью сетей Internet не менее 12 час/нед.

3. Необходимое современное оборудование и измерительные приборы для оснащения лаборатории в соответствии с рекомендациями УМО вузов, контролирующего данное направление.

4. Электронные и технические средства Lab Works Supervisor Workplace 1.2 для выполнения работ и компьютеризации лабораторного практикума.

Последовательность изложения вопросов и их глубина может быть различной в зависимости от состава аудитории и уровня подготовки студентов. Кроме того, преподаватель имеет право выбора способа изложения того или иного вопроса наиболее адекватного составу слушателей. Лекционный курс рекомендуется излагать с использованием мультимедийных средств.

Основные приемы изучения дисциплины и используемый соответствующий методический материал рассмотрены в учебниках и учебных пособиях (приведены в списках основной и дополнительной литературы):

1 Образовательные технологии: программно – целевой метод обучения (последовательное и ясное изложение материала, разумное сочетание абстрактного и конкретного, обучение по примерам; на практических занятиях для развития самостоятельного мышления и умения рассуждать рекомендуется применение исследовательского и эвристического методов); самостоятельное чтение студентами учебной, учебно-методической и справочной литературы и последующее обсуждение в виде выступлений по освоенному ими материалу на семинарских занятиях ; использование иллюстративных анимационных и видеоматериалов (видеофильмы, фотографии, аудиозаписи, компьютерные презентации), демонстрируемых на современном оборудовании.

2 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации: конкретные формы и процедуры текущего, промежуточного и итогового контроля знаний доводятся до сведения обучающихся в течение первого месяца обучения. Для организации изучения дисциплины рекомендуются разработанные автором и утверждённые вузом фонды оценочных средств , включающие домашние задания, контрольные работы , курсовой проект, тесты и методы контроля (защита, коллоквиум, зачёт, и др.), позволяющие оценить знания, умения и уровень компетентности студентов.

Контроль приобретенных навыков практической работы в лабораториях кафедры осуществляется в два этапа: при выполнении лабораторных работ и при защите теоретической части работы, результатов моделирования и оценки их достоверности.

Ежемесячно проводится оценка текущей успеваемости в форме аттестации студента и сведения передаются в деканат.

3 Итоговый контроль осуществляется защитой контрольной работы, приемом зачета и экзамена в виде тестирования. Экзаменационные тесты, разработанные автором и утверждённые вузом, должны строго соответствовать содержанию курса читаемых разделов дисциплины в данном семестре. Студенты допускаются к сдаче экзамена при наличии положительных результатов по: контрольным работам; выполненным и защищенным заданиям на семинарских занятиях, домашних заданий и зачетов.

В семестре во время изучения дисциплины студент очной формы обучения должен выполнить 14 практических работ в соответствии с методическими указаниями к каждой работе, согласно календарному учебному плану и индивидуальному графику. Индивидуальный график работ является общим для всех студентов СПГГУ, в нем темы работ очередного занятия распределены на каждого студента согласно его порядковому номеру в журнале группы (журнал находится у старосты группы).

По выполненным работам студент составляет отчеты. Отчёт оформляется в печатном виде на листах формата А4 в соответствии с требованиями, предъявляемыми кафедрой. Обязательная защита отчетов происходит публично на аудиторном занятии преподавателю, ведущему занятия, либо комиссии.

В соответствии с рабочей программой необходимо выполнить две контрольные работы в семестре, одна из которых домашняя, вторая – аудиторная. Контрольные работы выполняются по заданиям, аналогичным тем, что приведены в указанных выше методических пособиях, разработанных на кафедре СПГГУ и других вузов. В контрольных работах даются задачи, аналогичные типовым задачам, разобранным в учебных пособиях, приведенных в основной и дополнительной литературе.

Вся информация по организации учебного процесса продублирована на кафедральных информационных стендах.

Разработчик:

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы. Ключевым понятием в данном случае является понятие «проблемы», которое можно определить как «субъективное отрицательное отношение субъекта к реальности». Соответственно этап выявления и диагностики проблемы в сложных системах является наиболее важными, т. к. определяет цели и задачи проведения системного анализа, а также методы и алгоритмы, которые будут применяться в дальнейшем при поддержке принятия решений. В тоже время этот этап является наиболее сложным и наименее формализованным.

Анализ русскоязычных трудов по системному анализу позволяет выделить два наиболее крупных направления в данной области, которые можно условно назвать рациональный и объективно-субъективный подходы.

Первое направление (рациональный подход) рассматривает системный анализ как набор методов, и в том числе методов, основанных на использовании ЭВМ, ориентированных на исследование сложных систем. При таком подходе наибольшее внимание уделяется формальным методам построения моделей систем и математическим методам исследования системы. Понятия «субъект» и «проблема» как таковые не рассматриваются, а вот понятие «типовых» систем и проблем как раз встречается часто (система управления - проблема управления, финансовая система - финансовые проблемы и др.).

При таком подходе «проблема» определяется как несоответствие действительного желаемому, т. е. несоответствие между реально наблюдаемой системой и «идеальной» моделью системы. Важно отметить, что в данном случае система определяется исключительно как та часть объективной реальности, которую необходимо сравнить с эталонной моделью.

Если опираться на понятие «проблемы», то можно сделать заключение, что при рациональном подходе проблема возникает только у системного аналитика, который имеет некую формальную модель некоторой системы, находит данную систему и обнаруживает несоответствие модели и реальной системы, что и вызывает его «отрицательное отношение к реальности». Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

Очевидно, что существуют системы, организация и поведение которых строго регламентирована и признана всеми субъектами - это, например, юридические законы. Несоответствие модели (закона) и действительности в данном случае является проблемой (правонарушением), которую нужно решить. Однако для большинства искусственных систем строгих регламентов не существует, а субъекты имеют свои личные цели по отношению к подобным системам, редко совпадающие с целями других субъектов. Более того, конкретный субъект имеет свое собственное представление о том, частью какой системы он является, с какими системами он взаимодействует. Понятия, которыми оперирует субъект, могут кардинально отличаться от «рациональных» общепринятых. Например, субъект может вообще не выделять из окружающей среды систему управления, а использовать некую только ему понятную и удобную модель взаимодействия с миром. Получается, что навязывание общепринятых (даже если и рациональных) моделей может привести к возникновению «отрицательного отношения» у субъекта, а значит к появлению новых проблем, что в корне противоречит самой сути системного анализа, который предполагает улучшающее воздействие - когда хотя бы одному участнику проблемы станет лучше и никому не станет хуже.

Очень часто постановку задачи системного анализа в рациональном подходе выражают в терминах задачи оптимизации, т. е. идеализируют проблемную ситуацию до уровня, позволяющего использовать математические модели и количественные критерии для определения наилучшего варианта разрешения проблемы.

Как известно для системной проблемы не существует какой-либо модели, исчерпывающе устанавливающей причинно-следственные связи между ее компонентами, потому оптимизационный подход кажется не вполне конструктивным: «…теория системного анализа исходит из отсутствия оптимального, абсолютно лучшего варианта разрешения проблем любой природы… предлагается итеративный поиск реально достижимого (компромиссного) варианта разрешения проблемы, когда желаемым можно поступиться в угоду возможному, а границы возможного могут быть существенно расширены за счет стремления достичь желаемого. Тем самым предполагается использование ситуативных критериев предпочтительности, т. е. критериев, которые не являются исходными установками, а вырабатываются в ходе проведения исследования…».

Другое направление системного анализа - объективно-субъективный подход, основанное на работах Акоффа, ставит понятие субъекта и проблемы во главу системного анализа. По сути, в данном подходе мы включаем субъекта в определение существующей и идеальной системы, т.е. с одной стороны системный анализ исходит из интересов людей - вносит субъективную составляющую проблемы, с другой стороны исследует объективно наблюдаемые факты и закономерности.

Вернемся к определению «проблемы». Из него, в частности, следует, что когда мы наблюдаем нерациональное (в общепринятом смысле) поведение субъекта, и субъект не имеет отрицательного отношения к происходящему, то нет и проблемы, которую нужно было бы решать. Данный факт хотя и не противоречит понятию «проблемы», но в определенных ситуациях исключать возможность существования объективной составляющей проблемы нельзя.

Системный анализ имеет в своем арсенале следующие возможности решить проблему субъекта:

* вмешаться в объективную реальность и, устранив объективную часть проблемы, изменить субъективное отрицательное отношение субъекта,

* изменить субъективное отношение субъекта, не вмешиваясь в реальность,

* одновременно вмешаться в объективную реальность и изменить субъективное отношение субъекта.

Очевидно, что второй способ не решает проблему, а всего лишь устраняет ее влияние на субъект, а значит объективная составляющая проблемы остается. Справедлива и обратная ситуация, когда объективная составляющая проблемы уже проявилась, но субъективное отношение еще не сформировано, либо по ряду причин оно пока не стало отрицательным.

Вот несколько причин, почему у субъекта может отсутствовать «отрицательное отношение к реальности»: Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. - М.: Мир, 2009. - 286 с.

* имеет не полную информацию о системе или использует ее не полностью;

* меняет оценку взаимоотношений с окружающей средой на психическом уровне;

* прерывает взаимоотношение с окружающей средой, которая вызывала «отрицательное отношение»;

* не верит информации о существовании проблем и их сущности, т.к. полагает, что сообщающие ее люди очерняют его деятельность или преследуют свои корыстные интересы, а может быть и потому, что просто лично не любит этих людей.

Следует помнить о том, что при отсутствии отрицательного отношения субъекта объективная составляющая проблемы остается и в той или иной степени продолжает влиять на субъект, либо проблема может существенно обостриться в будущем.

Поскольку выявление проблемы требует анализа субъективного отношения, то этот этап относится к неформализуемым этапам системного анализа.

Каких-либо эффективных алгоритмов или приемов на настоящий момент не предложено, чаще всего авторы работ по системному анализу полагаются на опыт и интуицию аналитика и предлагают ему полную свободу действий.

Системный аналитик должен обладать достаточным набором инструментов для описания и анализа той части объективной реальности, с которой взаимодействует или может взаимодействовать субъект. Инструменты могут включать методы экспериментального исследования систем и их моделирования. С повсеместным внедрением современных информационных технологий в организациях (коммерческих, научных, медицинских и др.) почти каждый аспект их деятельности регистрируется и сохраняется в базах данных, которые уже сегодня имеют очень большие объемы. Информация в подобных базах данных содержит детальное описание, как самих систем, так и истории их (систем) развития и жизни. Можно сказать, что сегодня при анализе большинства искусственных систем аналитик вероятнее столкнется с недостатком эффективных методов исследования систем, нежели с недостатком информации о системе.

Однако субъективное отношение должен сформулировать именно субъект, а он может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного аналитиком. Поэтому знания о системе и прогнозные модели, которые в итоге получит аналитик, должны быть представлены в явном, доступном к интерпретации виде (возможно на естественном языке). Такое представление можно назвать знаниями об исследуемой системе.

К сожалению эффективных методов получения знаний о системе на текущий момент не предложено. Наибольший интерес представляют модели и алгоритмы Data Mining (интеллектуальные анализ данных), которые в частных приложениях используются для извлечения знаний из «сырых» данных. Стоит отметить, что Data Mining является эволюцией теории управления баз данными и оперативного анализа данных (OLAP), основанной на использовании идеи многомерного концептуального представления.

Но в последние годы в связи с нарастающей проблемой «перегрузки информацией», все больше исследователей используют и совершенствуют методы Data Mining для решения задач извлечения знаний.

Широкое применение методов извлечения знаний весьма затруднено, что с одной стороны связано с недостаточной эффективностью большинства известных подходов, которые базируется на достаточно формальных математических и статистических методах, а с другой - с трудностью использования эффективных методов интеллектуальных технологий, которые не имеют достаточного формального описания и требуют привлечения дорогих специалистов. Последнее можно преодолеть, используя перспективный подход к построению эффективной системы анализа данных и извлечения знаний о системе, основанный на автоматизированном генерировании и настройке интеллектуальных информационных технологий. Такой подход позволит, во-первых, за счет применения передовых интеллектуальных технологий существенно повысить эффективность решения задачи извлечения знаний, которые будут предъявляться субъекту на этапе выявления проблемы при системном анализе. Во-вторых, исключить потребность в специалисте по настройке и использования интеллектуальных технологий, т. к. последние будут генерироваться, и настраиваться в автоматическом режиме. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. - М.: Наука, 2010. - C. 20 - 37.

Системный анализ - это методология решения крупных проблем, основанная на концепции систем. При этом, системный анализ имеет свою специфическую цель, содержание и предназначение.

В центре методологии системного анализа находится операция количественного сравнения альтернатив, которая выполняется с целью выбора альтернативы, подлежащей реализации. Если требование разнокачественности альтернатив выполнено, то могут быть получены количественные оценки. Но для того, чтобы количественные оценки позволяли вести сравнение альтернатив, они должны отражать участвующие в сравнении свойства альтернатив (выходной результат, эффективность, стоимость и другие).

Термин "системный анализ" впервые появился в связи с задачами военного управления в исследованиях RAND Corporation (1948). Первая книга по системному анализу вышла в 1956 году, ее авторами были американские ученые Кан и Манн. В отечественной литературе этот термин получил широкое распространение лишь после выхода в 1969 г. в издательстве "Советское радио" книги Станфорда Л. Оптнера "Системный анализ для решения деловых и промышленных проблем".

В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы. Приемы и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности.

Целью системного анализа является упорядочение последовательности действий при решении крупных проблем, основываясь на системном подходе. Системный анализ предназначен для решения того класса проблем, который находится вне короткого диапазона ежедневной деятельности.

Системный анализ как методология решения проблем претендует на то, чтобы исполнять роль каркаса, объединяющего все необходимые знания, методы и действия для решения проблемы. Именно этим определяется его отношение к таким областям, как исследование операций, теория статистических решений, теория организации и другим подобным.

Система, таким образом, есть то, что решает проблему.

Проблемой называется ситуация, характеризующаяся различием между необходимым (желаемым) выходом и существующим выходом. Выход является необходимым, если его отсутствие создает угрозу существованию или развитию системы. Существующий выход обеспечивается существующей системой. Желаемый выход обеспечивается желаемой системой.

Проблема - это разница между существующей и желаемой системой. Проблема может заключаться в предотвращении уменьшения выхода или же в увеличении выхода. Условия проблемы представляют собой существующую систему ("известное"). Требования представляют желаемую систему. Решение проблемы есть то, что заполняет промежуток между существующей и желаемой системами. Поэтому система, заполняющая промежуток, является объектом конструирования и называется решением проблемы.

Проблема характеризуется содержащимся в ней неизвестным и условием. Может быть, одна или много областей неизвестного. Неизвестное может быть определимо качественно, а не количественно. Количественной характеристикой может служить диапазон оценок, представляющих предполагаемое состояние неизвестного. Существенно, что определение одного неизвестного в терминах другого может быть противоречивым или избыточным. Неизвестные могут быть выражены только в терминах известного, т.е. такого, объекты, свойства и связи которого, установлены.

Поэтому известное определяется как количество, значение которого установлено. Существующее состояние (существующая система) может содержать и известное, и неизвестное; это означает, что существование неизвестного может не препятствовать способности системы функционировать. Существующая система, по определению, логична, но может не удовлетворять ограничению. Таким образом, действие системы само по себе не является конечным критерием хорошего, так как некоторые идеально работающие системы могут не обеспечить достижение целей. Определение целей может быть дано только в терминах требований к системе.

Требования к системе есть средство фиксации однозначных утверждений, определяющих цель. Хотя требования к системам устанавливаются в терминах объектов, свойств и связей, цели могут быть определены в терминах желаемого состояния. Цели и желаемое состояние для данного набора требований к системе могут полностью совпадать. Если они различны, то говорят, что требования представляют желаемую систему. Вообще, цели отождествляются с желаемой системой.

Промежуток между существующей и желаемой системой образует то, что называется проблемой. Цель действий состоит в том, чтобы свести к минимуму промежуток между существующей и предлагаемой системой. Сохранение или улучшение состояния системы отождествляется с промежутком между существующим и желаемым состоянием.

При решении проблем делового и промышленного мира наиболее важными пунктами являются объективность и логичность.

Объем знаний, широко подтвержденный наблюдениями, становится очевидностью. Наблюдение есть процесс, посредством которого данные отождествляются с системой для последующего объяснения этой системы.

Процесс объяснения должен быть рациональным, то есть проведенным логично.

Сохранение существующего состояния определяется как способность удерживать выход системы в предписанных пределах.

Улучшение состояния системы определяется, как способность получить выход выше или помимо того, который получается при существующем состоянии.

Объективность является основным требованием при наблюдении.

Рациональность (логичность) определяется как процесс мышления, основанный на использовании логического вывода.

Процесс нахождения решения проблемы концентрируется вокруг итеративно выполняемых операций идентификации условия, цели и возможностей для ее решения. Результатом идентификации является описание условия, цели и возможностей в терминах системных объектов (входа, процесса, выхода, обратных связей и ограничения), свойств и связей, т. е. в терминах структур и входящих в них элементов.

Всякий вход системы, является выходом этой или другой системы, а всякий выход - входом.

Выделить систему в реальном мире, значит указать все процессы, дающие данный выход.

Искусственные системы - это такие, элементы которых сделаны людьми, т. е. являются выходом сознательно выполняемых процессов человека. Во всякой искусственной системе существуют три различных по своей роли подпроцесса: основной процесс, обратная связь и ограничение.

Входом называется то, что изменяется при протекании данного процесса. Во многих случаях компонентами входа являются "рабочий вход" (то, что "обрабатывается") и процессор (то, что "обрабатывает").

Процесс переводит вход в выход. Способность переводить данный вход в данный выход, называется свойством данного процесса.

Выходом называется результат или конечное состояние процесса.

Связь определяет следование процессов, т. е. что выход некоторого процесса является входом определенного процесса.

Основной процесс преобразует вход в выход.

Обратная связь выполняет ряд операций: сравнивает выборку выхода с моделью выхода и выделяет различие, оценивает содержание и смысл различия, вырабатывает решение, сочлененное с различием, формирует процесс ввода решения (вмешательство в процесс системы) и воздействует на процесс с целью сближения выхода и модели выхода.

Процесс ограничения возбуждается потребителем выхода системы, анализирующим ее выход. Этот процесс воздействует на выход и управление системы, обеспечивая соответствие выхода системы целям потребителя. Ограничение системы, принимаемое в результате процесса ограничения, отражается моделью выхода. Ограничение системы состоит из цели (функции) системы и принуждающих связей (качеств функции). Принуждающие связи должны быть совместимы с целью.

Если структуры и элементы условия, цели и возможностей известны, идентификация имеет характер определения количественных отношений, а проблема называется количественной.

Если структура и элементы условия, цели и возможностей известны частично, идентификация имеет качественный характер, а проблема называется качественной или слабо структурированной.

Как методология решения проблем, системный анализ указывает принципиально необходимую последовательность взаимосвязанных операций, которая (в самых общих чертах) состоит из выявления проблемы, конструирования решения и реализации этого решения. Процесс решения представляет собой конструирование, оценку и отбор альтернатив систем по критериям стоимости, времени эффективности и риска с учетом отношений между предельными значениями приращений этих величин (так называемых маргинальных отношений). Выбор границ этого процесса определяется условием, целью и возможностями его реализации. Наиболее адекватное построение этого процесса предполагает всестороннее использование эвристических заключений в рамках постулированной системной методологии.

Редуцирование (уменьшение) числа переменных производится на основе анализа чувствительности проблемы к изменению отдельных переменных или групп переменных, агрегирования переменных в сводные факторы, выбором подходящих форм критериев, а также применением там, где это, возможно, математических способов сокращения перебора (методов математического программирования и т. п.).

Логическая целостность процесса обеспечивается явными или скрытыми предположениями, каждый из которых может являться источником риска. Отметим еще раз, что структура функций системы и решения проблемы в системном анализе постулируется, т. е. являются стандартной для любых систем и любых проблем. Меняться могут только методы выполнения функций.

Совершенствование методов при данном состоянии научных знаний имеет предел, определяемый как потенциально достижимый уровень. В результате решения проблемы устанавливаются новые связи и отношения, часть которых обусловливает желаемый выход, а другая часть определят непредвиденные возможности и ограничения, которые могут стать источником будущих проблем.